1
|
Schiffrin EL, Lipman ML and Mann JF:
Chronic kidney disease: Effects on the cardiovascular system.
Circulation. 116:85–97. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tonelli M, Wiebe N, Culleton B, House A,
Rabbat C, Fok M, McAlister F and Garg AX: Chronic kidney disease
and mortality risk: A systematic review. J Am Soc Nephrol.
17:2034–2047. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Meguid El Nahas A and Bello AK: Chronic
kidney disease: The global challenge. Lancet. 365:331–340. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Reiser J and Sever S: Podocyte biology and
pathogenesis of kidney disease. Ann Rev Med. 64:357–366. 2013.
View Article : Google Scholar
|
5
|
Floege J and Amann K: Primary
glomerulonephritides. Lancet. 387:2036–2048. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dalla Vestra M, Masiero A, Roiter AM,
Saller A, Crepaldi G and Fioretto P: Is podocyte injury relevant in
diabetic nephropathy? Studies in patients with type 2 diabetes.
Diabetes. 52:1031–1035. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Trivedi S, Zeier M and Reiser J: Role of
podocytes in lupus nephritis. Nephrol Dial Transplant.
24:3607–3612. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chronic Kidney Disease Prognosis
Consortium; Matsushita K, van der Velde M, Astor BC, Woodward M,
Levey AS, de Jong PE, Coresh J and Gansevoort RT: Association of
estimated glomerular filtration rate and albuminuria with all-cause
and cardiovascular mortality in general population cohorts: A
collaborative meta-analysis. Lancet. 375:2073–2081. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lv J, Xu D, Perkovic V, Ma X, Johnson DW,
Woodward M, Levin A, Zhang and Wang H: Corticosteroid therapy in
IgA nephropathy. J Am Soc Nephrol. 23:1108–1116. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Swamynathan SK: Krüppel-like factors:
Three fingers in control. Hum Genomics. 4:263–270. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mallipattu SK, Liu R, Zheng F, Narla G,
Ma'ayan A, Dikman S, Jain MK, Saleem M, D'Agati V, Klotman P, et
al: Kruppel-like factor 15 (KLF15) is a key regulator of podocyte
differentiation. J Biol Chem. 287:19122–19135. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gray S, Feinberg MW, Hull S, Kuo CT,
Watanabe M, Sen-Banerjee S, DePina A, Haspel R and Jain MK: The
Krüppel-like factor KLF15 regulates the insulin-sensitive glucose
transporter GLUT4. J Biol Chem. 277:34322–34328. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fisch S, Gray S, Heymans S, Haldar SM,
Wang B, Pfister O, Cui L, Kumar A, Lin Z, Sen-Banerjee S, et al:
Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy.
Proc Natl Acad Sci USA. 104:7074–7079. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mallipattu SK, Guo Y, Revelo MP, Roa-Peña
L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C,
et al: Krüppel-like factor 15 mediates glucocorticoid-induced
restoration of podocyte differentiation markers. J Am Soc Nephrol.
28:166–184. 2017. View Article : Google Scholar
|
15
|
Li N, Zhang J, Yan X, Zhang C, Liu H, Shan
X, Li J, Yang Y, Huang C, Zhang P, et al: SIRT3-KLF15 signaling
ameliorates kidney injury induced by hypertension. Oncotarget.
8:39592–39604. 2017.PubMed/NCBI
|
16
|
Faul C, Donnelly M, Merscher-Gomez S,
Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim
K, et al: The actin cytoskeleton of kidney podocytes is a direct
target of the antiproteinuric effect of cyclosporine A. Nat Med.
14:931–938. 2008. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Mundel P, Reiser J and Kriz W: Induction
of differentiation in cultured rat and human podocytes. J Am Soc
Nephrol. 8:697–705. 1997.PubMed/NCBI
|
18
|
Yang SH, Choi JW, Huh D, Jo HA, Kim S, Lim
CS, Lee JC, Kim HC, Kwon HM, Jeong CW, et al: Roles of fluid shear
stress and retinoic acid in the differentiation of primary cultured
human podocytes. Exp Cell Res. 354:48–56. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Turner JE, Paust HJ, Bennstein SB, Bramke
P, Krebs C, Steinmetz OM, Velden J, Haag F, Stahl RA and Panzer U:
Protective role for CCR5 in murine lupus nephritis. Am J Physiol
Renal Physiol. 302:F1503–F1515. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
TGF-beta: The master regulator of fibrosis. Nat Rev Nephrol.
12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cattran DC, Feehally J, Cook HT, Liu ZH,
Fervenza FC, Mezzano SA, Floege J, Nachman PH, Gipson DS, Praga M,
et al: Kidney disease: Improving global outcomes (KDIGO)
glomeru-lonephritis work group. KDIGO clinical practice guideline
for glomerulonephritis. Kidney Int Suppl. 2:139–274. 2012.
|
23
|
Coresh J, Selvin E, Stevens LA, Manzi J,
Kusek JW, Eggers P, Van Lente F and Levey AS: Prevalence of chronic
kidney disease in the United States. JAMA. 298:2038–2047. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Bommer J: Prevalence and socio-economic
aspects of chronic kidney disease. Nephrol Dial Transplant.
17(Suppl 11): S8–S12. 2002. View Article : Google Scholar
|
25
|
Turner J and Crossley M: Mammalian
Kruppel-like transcription factors: More than just a pretty finger.
Trends Biochem Sci. 24:236–240. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cohen CD, Klingenhoff A, Boucherot A,
Nitsche A, Henger A, Brunner B, Schmid H, Merkle M, Saleem MA,
Koller KP, et al: Comparative promoter analysis allows de novo
identification of specialized cell junction-associated proteins.
Proc Natl Acad Sci USA. 103:5682–5687. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Patrakka J, Kestilä M, Wartiovaara J,
Ruotsalainen V, Tissari P, Lenkkeri U, Männikkö M, Visapää I,
Holmberg C, Rapola J, et al: Congenital nephrotic syndrome (NPHS1):
Features resulting from different mutations in Finnish patients.
Kidney Int. 58:972–980. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mollet G, Ratelade J, Boyer O, Muda AO,
Morisset L, Lavin TA, Kitzis D, Dallman MJ, Bugeon L, Hubner N, et
al: Podocin inactivation in mature kidneys causes focal segmental
glomerulosclerosis and nephrotic syndrome. J Am Soc Nephrol.
20:2181–2189. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Barisoni L and Mundel P: Podocyte biology
and the emerging understanding of podocyte diseases. Am J Nephrol.
23:353–360. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rogers RG and Otis JS:
Resveratrol-mediated expression of KLF15 in the ischemic myocardium
is associated with an improved cardiac phenotype. Cardiovasc Drugs
Ther. 31:29–38. 2017. View Article : Google Scholar : PubMed/NCBI
|