1
|
Morgan CJ and Curran HV: Independent
Scientific Committee on Drugs: Ketamine use: A review. Addiction.
107:27–38. 2012. View Article : Google Scholar
|
2
|
Marland S, Ellerton J, Andolfatto G,
Strapazzon G, Thomassen O, Brandner B, Weatherall A and Paal P:
Ketamine: Use in anesthesia. CNS Neurosci Ther. 19:381–389. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jansen KL: A review of the nonmedical use
of ketamine: Use, users and consequences. J Psychoactive Drugs.
32:419–433. 2000. View Article : Google Scholar
|
4
|
Bovill JG: Intravenous anesthesia for the
patient with left ventricular dysfunction. Semin Cardiothorac Vasc
Anesth. 10:43–48. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Missair A, Pretto EA, Visan A, Lobo L,
Paula F, Castillo-Pedraza C, Cooper L and Gebhard RE: A matter of
life or limb? A review of traumatic injury patterns and anesthesia
techniques for disaster relief after major earthquakes. Anesth
Analg. 117:934–941. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Noh HJ, Bae YM, Park SH, Kim JG, Kim B,
Kim YS, Kim SH, Cho SI and Woo NS: The vasodilatory effect of
ketamine is independent of the N-methyl-D-aspartate receptor: Lack
of functional N-methyl-D-aspartate receptors in rat mesenteric
artery smooth muscle. Eur J Anaesthesiol. 26:676–682. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mulvey JM, Qadri AA and Maqsood MA:
Earthquake injuries and the use of ketamine for surgical
procedures: The Kashmir experience. Anaesth Intensive Care.
34:489–494. 2006.PubMed/NCBI
|
8
|
Mulvey JM, Awan SU, Qadri AA and Maqsood
MA: Profile of injuries arising from the 2005 Kashmir earthquake:
The first 72 h. Injury. 39:554–560. 2008. View Article : Google Scholar
|
9
|
Slikker W Jr, Zou X, Hotchkiss CE, Divine
RL, Sadovova N, Twaddle NC, Doerge DR, Scallet AC, Patterson TA,
Hanig JP, et al: Ketamine-induced neuronal cell death in the
perinatal rhesus monkey. Toxicol Sci. 98:145–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Scallet AC, Schmued LC, Slikker W Jr,
Grunberg N, Faustino PJ, Davis H, Lester D, Pine PS, Sistare F and
Hanig JP: Developmental neurotoxicity of ketamine: Morphometric
confirmation, exposure parameters, and multiple fluorescent
labeling of apoptotic neurons. Toxicol Sci. 81:364–370. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Tozuka Y, Fukuda S, Namba T, Seki T and
Hisatsune T: GABAergic excitation promotes neuronal differentiation
in adult hippocampal progenitor cells. Neuron. 47:803–815. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jiang XL, Du BX, Chen J, Liu L, Shao WB
and Song J: MicroRNA-34a negatively regulates anesthesia-induced
hippocampal apoptosis and memory impairment through FGFR1. Int J
Clin Exp Pathol. 7:6760–6767. 2014.PubMed/NCBI
|
13
|
Liu B, Zhang H, Xu C, Yang G, Tao J, Huang
J, Wu J, Duan X, Cao Y and Dong J: Neuroprotective effects of
icariin on corticosterone-induced apoptosis in primary cultured rat
hippocampal neurons. Brain Res. 1375:59–67. 2011. View Article : Google Scholar
|
14
|
Ko IG, Shin MS, Kim BK, Kim SE, Sung YH,
Kim TS, Shin MC, Cho HJ, Kim SC, Kim SH, et al: Tadalafil improves
short-term memory by suppressing ischemia-induced apoptosis of
hippocampal neuronal cells in gerbils. Pharmacol Biochem Behav.
91:629–635. 2009. View Article : Google Scholar
|
15
|
Reus GZ, Vieira FG, Abelaira HM, Michels
M, Tomaz DB, dos Santos MA, Carlessi AS, Neotti MV, Matias BI, Luz
JR, et al: MAPK signaling correlates with the antidepressant
effects of ketamine. J Psychiatr Res. 55:15–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rigon AP, Cordova FM, Oliveira CS, Posser
T, Costa AP, Silva IG, Santos DA, Rossi FM, Rocha JB and Leal RB:
Neurotoxicity of cadmium on immature hippocampus and a
neuroprotective role for p38 MAPK. Neurotoxicology. 29:727–734.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Segalés J, Perdiguero E and Muñoz-Cánoves
P: Regulation of muscle stem cell functions: A focus on the p38
MAPK signaling pathway. Front Cell Dev Biol. 4:912016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu XW, Ji EF, He P, Xing RX, Tian BX and
Li XD: Protective effects of the p38 MAPK inhibitor SB203580 on
NMDAinduced injury in primary cerebral cortical neurons. Mol Med
Rep. 10:1942–1948. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lu HW, He GN, Ma H and Wang JK: Ketamine
reduces inducible superoxide generation in human neutrophils in
vitro by modulating the p38 mitogen-activated protein kinase
(MAPK)-mediated pathway. Clin Exp Immunol. 160:450–456. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Tuo YL, Li XM and Luo J: Long noncoding
RNA UCA1 modulates breast cancer cell growth and apoptosis through
decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci.
19:3403–3411. 2015.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods.
25:402–408. 2001. View Article : Google Scholar
|
22
|
Mansouri S, Agartz I, Ögren SO, Patrone C
and Lundberg M: PACAP protects adult neural stem cells from the
neurotoxic effect of ketamine associated with decreased apoptosis,
ER stress and mTOR pathway activation. PLoS One. 12:e01704962017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bai X, Yan Y, Canfield S, Muravyeva MY,
Kikuchi C, Zaja I, Corbett JA and Bosnjak ZJ: Ketamine enhances
human neural stem cell proliferation and induces neuronal apoptosis
via reactive oxygen species-mediated mitochondrial pathway. Anesth
Analg. 116:869–880. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zheng GY, Chen XC, Du J, Liu CY, Fang F,
Zhang J, Huang TW and Zeng YQ: Inhibitory action of propyl gallate
on the activation of SAPK/JNK and p38MAPK induced by cerebral
ischemia-reperfusion in rats. Yao Xue Xue Bao. 41:548–554. 2006.In
Chinese. PubMed/NCBI
|
25
|
Zou X, Patterson TA, Divine RL, Sadovova
N, Zhang X, Hanig JP, Paule MG, Slikker W Jr and Wang C: Prolonged
exposure to ketamine increases neurodegeneration in the developing
monkey brain. Int J Dev Neurosci. 27:727–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang C, Sadovova N, Fu X, Schmued L,
Scallet A, Hanig J and Slikker W: The role of the
N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat
forebrain culture. Neuroscience. 132:967–977. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Engelhardt T, Blaylock M and Weiss M:
Sublethal spinal ketamine produces neuronal apoptosis in rat pups.
Anesthesiology. 114:718–721. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Foraster MA, Celada P, Jensen AA, Plath N,
Herrik KF and Artigas F: P2.010 Ketamine inhibits the activity of
thalamic neurons in anesthetized rats. Eur Neuropsychopharmacol.
26(Suppl 1): S31–S32. 2016. View Article : Google Scholar
|
29
|
Yang S, Zhou G, Liu H, Zhang B, Li J, Cui
R and Du Y: Protective effects of p38 MAPK inhibitor SB202190
against hippocampal apoptosis and spatial learning and memory
deficits in a rat model of vascular dementia. Biomed Res Int.
2013:2157982013. View Article : Google Scholar
|
30
|
Miskovic M, Lalic T, Radivojevic D,
Cirkovic S, Vlahovic G, Zamurovic D and Guc-Scekic M: Lower
incidence of deletions in the survival of motor neuron gene and the
neuronal apoptosis inhibitory protein gene in children with spinal
muscular atrophy from Serbia. Tohoku J Exp Med. 225:153–159. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Cardaci S, Filomeni G, Rotilio G and
Ciriolo MR: p38MAPK/p53 signalling axis mediates
neuronal apoptosis in response to tetra-hydrobiopterin-induced
oxidative stress and glucose uptake inhibition: Implication for
neurodegeneration. Biochem J. 430:439–451. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cuenda A and Rousseau S: p38 MAP-kinases
pathway regulation, function and role in human diseases. Biochim
Biophys Acta. 1773:1358–1375. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lan A, Liao X, Mo L, Yang C, Yang Z, Wang
X, Hu F, Chen P, Feng J, Zheng D and Xiao L: Hydrogen sulfide
protects against chemical hypoxia-induced injury by inhibiting
ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.
PLoS One. 6:e259212011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu W, Wang G and Yakovlev AG:
Identification and functional analysis of the rat caspase-3 gene
promoter. J Biol Chem. 277:8273–8278. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ohta T, Eguchi R, Suzuki A, Miyakaze S,
Ayuzawa R and Kaji K: Hypoxia-induced apoptosis and tube breakdown
are regulated by p38 MAPK but not by caspase cascade in an in vitro
capillary model composed of human endothelial cells. J Cell
Physiol. 211:673–681. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fan Y, Chen H, Qiao B, Luo L, Ma H, Li H,
Jiang J, Niu D and Yin Z: Opposing effects of ERK and p38 MAP
kinases on HeLa cell apoptosis induced by dipyrithione. Mol Cells.
23:30–38. 2007.PubMed/NCBI
|
37
|
Ghatan S, Larner S, Kinoshita Y, Hetman M,
Patel L, Xia Z, Youle RJ and Morrison RS: p38 MAP kinase mediates
bax translocation in nitric oxide-induced apoptosis in neurons. J
Cell Biol. 150:335–347. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang X, Bi L, Ye Y and Chen J:
Formononetin induces apoptosis in PC-3 prostate cancer cells
through enhancing the Bax/Bcl-2 ratios and regulating the p38/Akt
pathway. Nutr Cancer. 66:656–661. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lu X, Li C, Wang YK, Jiang K and Gai XD:
Sorbitol induces apoptosis of human colorectal cancer cells via p38
MAPK signal transduction. Oncol Lett. 7:1992–1996. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Huang H, Chan H, Wang YY, Ouyang DY, Zheng
YT and Tam SC: Trichosanthin suppresses the elevation of p38 MAPK,
and Bcl-2 induced by HSV-1 infection in Vero cells. Life Sci.
79:1287–1292. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Torcia M, De Chiara G, Nencioni L,
Ammendola S, Labardi D, Lucibello M, Rosini P, Marlier LN, Bonini
P, Dello Sbarba P, et al: Nerve growth factor inhibits apoptosis in
memory B lymphocytes via inactivation of p38 MAPK, prevention of
Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem.
276:39027–39036. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
De Chiara G, Marcocci ME, Torcia M,
Lucibello M, Rosini P, Bonini P, Higashimoto Y, Damonte G,
Armirotti A, Amodei S, et al: Bcl-2 Phosphorylation by p38 MAPK:
Identification of target sites and biologic consequences. J Biol
Chem. 281:21353–21361. 2006. View Article : Google Scholar : PubMed/NCBI
|