Functions of EpCAM in physiological processes and diseases (Review)
- Authors:
- Li Huang
- Yanhong Yang
- Fei Yang
- Shaomin Liu
- Ziqin Zhu
- Zili Lei
- Jiao Guo
-
Affiliations: Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China, The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China - Published online on: July 11, 2018 https://doi.org/10.3892/ijmm.2018.3764
- Pages: 1771-1785
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Herlyn M, Steplewski Z, Herlyn D and Koprowski H: Colorectal carcinoma-specific antigen: Detection by means of monoclonal antibodies. Proc Natl Acad Sci USA. 76:1438–1442. 1979. View Article : Google Scholar : PubMed/NCBI | |
Schnell U, Cirulli V and Giepmans BN: EpCAM: Structure and function in health and disease. Biochim Biophys Acta. 1828:1989–2001. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balzar M, Winter MJ, De Boer CJ and Litvinov SV: The biology of the 17-1A antigen (Ep-C AM). J Mol Med (Berl). 77:699–712. 1999. View Article : Google Scholar | |
Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, et al: Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 204:1973–1987. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kamimoto K, Kaneko K, Kok CY, Okada H, Miyajima A and Itoh T: Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. Elife. 5:e150342016. View Article : Google Scholar : PubMed/NCBI | |
Sivagnanam M, Mueller JL, Lee H, Chen Z, Nelson SF, Turner D, Zlotkin SH, Pencharz PB, Ngan BY, Libiger O, et al: Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology. 135:429–437. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, Yashiro K, Tsukita S and Hamada H: EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol. 371:136–145. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guerra E, Lattanzio R, La Sorda R, Dini F, Tiboni GM, Piantelli M and Alberti S: mTrop1/Epcam knockout mice develop congenital tufting enteropathy through dysregulation of intestinal E-cadherin/β-catenin. PLos One. 7:e493022012. View Article : Google Scholar | |
Mueller JL, McGeough MD, Peña CA and Sivagnanam M: Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol. 306:G278–G288. 2014. View Article : Google Scholar : | |
Nagao K, Zhu J, Heneghan MB, Hanson JC, Morasso MI, Tessarollo L, Mackem S and Udey MC: Abnormal placental development and early embryonic lethality in EpCAM-null mice. PLos One. 4:e85432009. View Article : Google Scholar : | |
Gaiser MR, Lämmermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L, Germain RN and Udey MC: Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci USA. 109:E889–E897. 2012. View Article : Google Scholar : PubMed/NCBI | |
Slanchev K, Carney TJ, Stemmler MP, Koschorz B, Amsterdam A, Schwarz H and Hammerschmidt M: The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLos Genet. 5:e10005632009. View Article : Google Scholar : PubMed/NCBI | |
Maghzal N, Vogt E, Reintsch W, Fraser JS and Fagotto F: The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. J Cell Biol. 191:645–659. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maghzal N, Kayali HA, Rohani N, Kajava AV and Fagotto F: EpCAM controls actomyosin contractility and cell adhesion by direct inhibition of PKC. Dev Cell. 27:263–277. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Ma J, Yang Y, Shi W and Luo L: EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. Dev Cell. 24:543–553. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trzpis M, McLaughlin PM, De Leij LM and Harmsen MC: Epithelial cell adhesion molecule: More than a carcinoma marker and adhesion molecule. Am J Pathol. 171:386–395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cirulli V, Crisa L, Beattie GM, Mally MI, Lopez AD, Fannon A, Ptasznik A, Inverardi L, Ricordi C, Deerinck T, et al: KSA antigen Ep-CAM mediates cell-cell adhesion of pancreatic epithelial cells: Morphoregulatory roles in pancreatic islet development. J Cell Biol. 140:1519–1534. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lipinski M, Parks DR, Rouse RV and Herzenberg LA: Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci USA. 78:5147–5150. 1981. View Article : Google Scholar : PubMed/NCBI | |
Sherwood RI, Jitianu C, Cleaver O, Shaywitz DA, Lamenzo JO, Chen AE, Golub TR and Melton DA: Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Dev Biol. 304:541–555. 2007. View Article : Google Scholar : PubMed/NCBI | |
Poon CE, Madawala RJ, Day ML and Murphy CR: EpCAM is decreased but is still present in uterine epithelial cells during early pregnancy in the rat: Potential mechanism for maintenance of mucosal integrity during implantation. Cell Tissue Res. 359:655–664. 2015. View Article : Google Scholar | |
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, et al: EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baeuerle PA and Gires O: EpCAM (CD326) finding its role in cancer. Br J Cancer. 96:417–423. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ladwein M, Pape UF, Schmidt DS, Schnölzer M, Fiedler S, Langbein L, Franke WW, Moldenhauer G and Zöller M: The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp Cell Res. 309:345–357. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M and Gires O: Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 11:162–171. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O and van Grunsven LA: EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 308:G233–G250. 2015. View Article : Google Scholar : | |
Litvinov SV, Velders MP, Bakker HA, Fleuren GJ and Warnaar SO: Ep-CAM: A human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol. 125:437–446. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu LW, Sun WJ, Qin SH, Qin LZ and Wang X: Expressions of E-cadherin, p120ctn, β-catenin and NF-κB in ulcerative colitis. J Huazhong Univ Sci Technolog Med Sci. 35:368–373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D and Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 113:173–185. 1991. View Article : Google Scholar : PubMed/NCBI | |
Berx G, Nollet F and van Roy F: Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas. Cell Adhes Commun. 6:171–184. 1998. View Article : Google Scholar : PubMed/NCBI | |
Handschuh G, Candidus S, Luber B, Reich U, Schott C, Oswald S, Becke H, Hutzler P, Birchmeier W, Höfler H and Becker KF: Tumour-associated E-cadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility. Oncogene. 18:4301–4312. 1999. View Article : Google Scholar : PubMed/NCBI | |
Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A and Reeve AE: E-cadherin germline mutations in familial gastric cancer. Nature. 392:402–405. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gayther SA, Gorringe KL, Ramus SJ, Huntsman D, Roviello F, Grehan N, Machado JC, Pinto E, Seruca R, Halling K, et al: Identification of germ-line E-cadherin mutations in gastric cancer families of European origin. Cancer Res. 58:4086–4089. 1998.PubMed/NCBI | |
Corso G, Marrelli D and Roviello F: Familial gastric cancer and germline mutations of E-cadherin. Ann Ital Chir. 83:177–182. 2012.PubMed/NCBI | |
Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-De Bruijn IH, Prins F, Fleuren GJ and Warnaar SO: Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. J Cell Biol. 139:1337–1348. 1997. View Article : Google Scholar | |
Winter MJ, Nagelkerken B, Mertens AE, Rees-Bakker HA, Briaire-De Bruijn IH and Litvinov SV: Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res. 285:50–58. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kozan PA, McGeough MD, Peña CA, Mueller JL, Barrett KE, Marchelletta RR and Sivagnanam M: Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction. J Mol Med (Berl). 93:535–545. 2015. View Article : Google Scholar | |
Bondow BJ, Faber ML, Wojta KJ, Walker EM and Battle MA: E-cadherin is required for intestinal morphogenesis in the mouse. Dev Biol. 371:1–12. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Günzel D, Fromm M, Kemler R, Krieg T and Niessen CM: E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24:1146–1156. 2005. View Article : Google Scholar : PubMed/NCBI | |
Patey N, Scoazec JY, Cuenod-Jabri B, Canioni D, Kedinger M, Goulet O and Brousse N: Distribution of cell adhesion molecules in infants with intestinal epithelial dysplasia (tufting enteropathy). Gastroenterology. 113:833–843. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wu CJ, Mannan P, Lu M and Udey MC: Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J Biol Chem. 288:12253–12268. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, Mayeux A, Michaux G, Campeotto F, Lemale J, et al: Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 8:139982017. View Article : Google Scholar : PubMed/NCBI | |
Kuhn S, Koch M, Nübel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, et al: A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res. 5:553–567. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nübel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L and Zöller M: Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res. 7:285–299. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T and Sawada N: Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem. 54:933–944. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hewitt KJ, Agarwal R and Morin PJ: The claudin gene family: Expression in normal and neoplastic tissues. BMC Cancer. 6:1862006. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, Cao J and Chen YH: Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology. 142:305–315. 2012. View Article : Google Scholar : | |
Nakatsukasa M, Kawasaki S, Yamasaki K, Fukuoka H, Matsuda A, Tsujikawa M, Tanioka H, Nagata-Takaoka M, Hamuro J and Kinoshita S: Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: Implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am J Pathol. 177:1344–1355. 2010. View Article : Google Scholar : PubMed/NCBI | |
Daugherty BL, Ward C, Smith T, Ritzenthaler JD and Koval M: Regulation of heterotypic claudin compatibility. J Biol Chem. 282:30005–30013. 2007. View Article : Google Scholar : PubMed/NCBI | |
Furuse M, Sasaki H and Tsukita S: Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 147:891–903. 1999. View Article : Google Scholar : PubMed/NCBI | |
Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G and Blasig IE: Formation of tight junction: Determinants of homophilic interaction between classic claudins. FASEB J. 22:146–158. 2008. View Article : Google Scholar | |
Tatum R, Zhang Y, Salleng K, Lu Z, Lin JJ, Lu Q, Jeansonne BG, Ding L and Chen YH: Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal Physiol. 298:F24–F34. 2010. View Article : Google Scholar : | |
Gladden AB, Hebert AM, Schneeberger EE and McClatchey AI: The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 19:727–739. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tinkle CL, Pasolli HA, Stokes N and Fuchs E: New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc Natl Acad Sci USA. 105:15405–15410. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vasioukhin V, Bauer C, Degenstein L, Wise B and Fuchs E: Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell. 104:605–617. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shin K, Fogg VC and Margolis B: Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 22:207–235. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tepass U: Claudin complexities at the apical junctional complex. Nat Cell Biol. 5:595–597. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Campenhout CA, Eitelhuber A, Gloeckner CJ, Giallonardo P, Gegg M, Oller H, Grant SG, Krappmann D, Ueffing M and Lickert H: Dlg3 trafficking and apical tight junction formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases. Dev Cell. 21:479–491. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goulet O, Kedinger M, Brousse N, Cuenod B, Colomb V, Patey N, De Potter S, Mougenot JF, Canioni D, Cerf-Bensussan N, et al: Intractable diarrhea of infancy with epithelial and basement membrane abnormalities. J Pediatr. 127:212–219. 1995. View Article : Google Scholar : PubMed/NCBI | |
Goulet O, Salomon J, Ruemmele F, De Serres NP and Brousse N: Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2:202007. View Article : Google Scholar : PubMed/NCBI | |
Beaulieu JF: Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine. J Cell Sci. 102:427–436. 1992.PubMed/NCBI | |
Simon-Assmann P, Bouziges F, Vigny M and Kedinger M: Origin and deposition of basement membrane heparan sulfate proteoglycan in the developing intestine. J Cell Biol. 109:1837–1848. 1989. View Article : Google Scholar : PubMed/NCBI | |
Simon-Assmann P, Duclos B, Orian-Rousseau V, Arnold C, Mathelin C, Engvall E and Kedinger M: Differential expression of laminin isoforms and alpha 6-beta 4 integrin subunits in the developing human and mouse intestine. Dev Dyn. 201:71–85. 1994. View Article : Google Scholar : PubMed/NCBI | |
Simon-Assmann P and Kedinger M: Heterotypic cellular cooperation in gut morphogenesis and differentiation. Semin Cell Biol. 4:221–230. 1993. View Article : Google Scholar : PubMed/NCBI | |
Simo P, Simon-Assmann P, Bouziges F, Leberquier C, Kedinger M, Ekblom P and Sorokin L: Changes in the expression of laminin during intestinal development. Development. 112:477–487. 1991.PubMed/NCBI | |
Simo P, Bouziges F, Lissitzky JC, Sorokin L, Kedinger M and Simon-Assmann P: Dual and asynchronous deposition of laminin chains at the epithelial-mesenchymal interface in the gut. Gastroenterology. 102:1835–1845. 1992. View Article : Google Scholar : PubMed/NCBI | |
Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y and Tsukita S: Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology. 140:913–923. 2011. View Article : Google Scholar | |
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al: Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 4:270662015. View Article : Google Scholar : PubMed/NCBI | |
Colombo M, Raposo G and Théry C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tkach M and Théry C: Communication by extracellular vesicles: Where we are and where we need to go. Cell. 164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iwai S, Kurosu S, Sasaki H, Kato K and Maekawa T: Trapping and proliferation of target cells on C60 fullerene nano fibres. Heliyon. 3:e003862017. View Article : Google Scholar : | |
Jiang L, Shen Y, Guo D, Yang D, Liu J, Fei X, Yang Y, Zhang B, Lin Z, Yang F, et al: Corrigendum: EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat Commun. 8:160062017. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Zhang W, Yang F, Yu L, Yu Z, Pan J, Wang L, Cao X and Wang J: Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 22:607–610. 2012. View Article : Google Scholar | |
Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, Wei Y, Cao X, Wang J and Cai Z: Exosomes with membrane-associated TGF-β1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction. Eur J Immunol. 43:2461–2472. 2013. View Article : Google Scholar : PubMed/NCBI | |
Villablanca EJ, Renucci A, Sapède D, Lec V, Soubiran F, Sandoval PC, Dambly-Chaudière C, Ghysen A and Allende ML: Control of cell migration in the zebrafish lateral line: Implication of the gene 'tumour-associated calcium signal transducer,' tacstd. Dev Dyn. 235:1578–1588. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aman A and Piotrowski T: Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell. 15:749–761. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sarrach S, Huang Y, Niedermeyer S, Hachmeister M, Fischer L, Gille S, Pan M, Mack B, Kranz G, Libl D, et al: Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Sci Rep. 8:18012018. View Article : Google Scholar : PubMed/NCBI | |
De Boer CJ, Van Krieken JH, Janssen-Van Rhijn CM and Litvinov SV: Expression of Ep-CAM in normal, regenerating, metaplastic, and neoplastic liver. J Pathol. 188:201–206. 1999. View Article : Google Scholar : PubMed/NCBI | |
Münz M, Kieu C, Mack B, Schmitt B, Zeidler R and Gires O: The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene. 23:5748–5758. 2004. View Article : Google Scholar : PubMed/NCBI | |
Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ and Gillanders WE: EpCAM is over expressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res. 64:5818–5824. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schmelzer E, Wauthier E and Reid LM: The phenotypes of pluripotent human hepatic progenitors. Stem Cells. 24:1852–1858. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Theise N, Chua M and Reid LM: The stem cell niche of human livers: Symmetry between development and regeneration. Hepatology. 48:1598–1607. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shimazaki T, Okazawa H, Fujii H, Ikeda M, Tamai K, McKay RD, Muramatsu M and Hamada H: Hybrid cell extinction and re-expression of Oct-3 function correlates with differentiation potential. EMBO J. 12:4489–4498. 1993.PubMed/NCBI | |
González B, Denzel S, Mack B, Conrad M and Gires O: EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells. 27:1782–1791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF and Wu HC: Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem. 285:8719–8732. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K and Miyajima A: Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development. 136:1951–1960. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tanaka M, Okabe M, Suzuki K, Kamiya Y, Tsukahara Y, Saito S and Miyajima A: Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: Drastic change of EpCAM expression during liver development. Mech Dev. 126:665–676. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hachmeister M, Bobowski KD, Hogl S, Dislich B, Fukumori A, Eggert C, Mack B, Kremling H, Sarrach S, Coscia F, et al: Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM. PLos One. 8:e718362013. View Article : Google Scholar : PubMed/NCBI | |
Huang HP, Chen PH, Yu CY, Chuang CY, Stone L, Hsiao WC, Li CL, Tsai SC, Chen KY, Chen HF, et al: Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. J Biol Chem. 286:33520–33532. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Ma Y and Wang H: EpCAM intracellular domain promotes porcine cell reprogramming by upregulation of pluripotent gene expression via beta-catenin signaling. Sci Rep. 7:463152017. View Article : Google Scholar : PubMed/NCBI | |
Kuan II, Liang KH, Wang YP, Kuo TW, Meir YJ, Wu SC, Yang SC, Lu J and Wu HC: EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α. Sci Rep. 7:418522017. View Article : Google Scholar | |
Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, Coulomb A, Marinier E, Hugot JP, Ruemmele F, et al: Genetic characterization of congenital tufting enteropathy: Epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 133:299–310. 2014. View Article : Google Scholar | |
Slae MA, Saginur M, Persad R, Yap J, Lacson A, Salomon J, Canioni D and Huynh HQ: Syndromic congenital diarrhea because of the SPINT2 mutation showing enterocyte tufting and unique electron microscopy findings. Clin Dysmorphol. 22:118–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Furuse M, Furuse K, Sasaki H and Tsukita S: Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 153:263–272. 2001. View Article : Google Scholar : PubMed/NCBI | |
Van Itallie CM, Fanning AS and Anderson JM: Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol. 285:F1078–F1084. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Gomes AS, Paul DL and Goodenough DA: Study of claudin function by RNA interference. J Biol Chem. 281:36117–36123. 2006. View Article : Google Scholar : PubMed/NCBI | |
Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD and Fromm M: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 115:4969–4976. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yu AS, Cheng MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M and Coalson RD: Molecular basis for cation selectivity in claudin-2-based paracellular pores: Identification of an electrostatic interaction site. J Gen Physiol. 133:111–127. 2009. View Article : Google Scholar : | |
Schultz SG and Curran PF: Coupled transport of sodium and organic solutes. Physiol Rev. 50:637–718. 1970. View Article : Google Scholar : PubMed/NCBI | |
Kapus A and Szászi K: Coupling between apical and paracellular transport processes. Biochem Cell Biol. 84:870–880. 2006. View Article : Google Scholar | |
Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF and Hediger MA: A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 399:70–75. 1999. View Article : Google Scholar : PubMed/NCBI | |
Holmes JL, Van Itallie CM, Rasmussen JE and Anderson JM: Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns. 6:581–588. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wada M, Tamura A, Takahashi N and Tsukita S: Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 144:369–380. 2013. View Article : Google Scholar | |
Zhou N, Wang H, Liu H, Xue H, Lin F, Meng X, Liang A, Zhao Z, Liu Y and Qian H: MTA1-upregulated EpCAM is associated with metastatic behaviors and poor prognosis in lung cancer. J Exp Clin Cancer Res. 34:1572015. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Fan X, Fu B, Zheng M, Zhang A, Zhong K, Yan J, Sun R, Tian Z and Wei H: EpCAM inhibition sensitizes chemo-resistant leukemia to immune surveillance. Cancer Res. 77:482–493. 2017. View Article : Google Scholar | |
Patriarca C, Macchi RM, Marschner AK and Mellstedt H: Epithelial cell adhesion molecule expression (CD326) in cancer: A short review. Cancer Treat Rev. 38:68–75. 2012. View Article : Google Scholar | |
Wang MH, Sun R, Zhou XM, Zhang MY, Lu JB, Yang Y, Zeng LS, Yang XZ, Shi L, Xiao RW, et al: Epithelial cell adhesion molecule overexpression regulates epithelial-mesenchymal transition, stemness and metastasis of nasopharyngeal carcinoma cells via the PTEN/AKT/mTOR pathway. Cell Death Dis. 9:22018. View Article : Google Scholar : PubMed/NCBI | |
Denzel S, Maetzel D, Mack B, Eggert C, Bärr G and Gires O: Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer. 9:4022009. View Article : Google Scholar : PubMed/NCBI | |
Xiang D, Shigdar S, Bean AG, Bruce M, Yang W, Mathesh M, Wang T, Yin W, Tran PH, Al Shamaileh H, et al: Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics. 7:4071–4086. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hoe SLL, Tan LP, Abdul Aziz N, Liew K, Teow SY, Abdul Razak FR, Chin YM, Mohamed Shahrehan NA, Chu TL, Mohd Kornain NK, et al: CD24, CD44 and EpCAM enrich for tumour-initiating cells in a newly established patient-derived xenograft of nasopharyngeal carcinoma. Sci Rep. 7:123722017. View Article : Google Scholar : PubMed/NCBI | |
Choi YJ, Park SJ, Park YS, Park HS, Yang KM and Heo K: EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLos One. 13:e01906382018. View Article : Google Scholar : PubMed/NCBI | |
Hwang EY, Yu CH, Cheng SJ, Chang JY, Chen HM and Chiang CP: Decreased expression of Ep-CAM protein is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med. 38:87–93. 2009. View Article : Google Scholar | |
Gosens MJ, Van Kempen LC, Van de Velde CJ, Van Krieken JH and Nagtegaal ID: Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol. 20:221–232. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wen KC, Sung PL, Chou YT, Pan CM, Wang PH, Lee OK and Wu CW: The role of EpCAM in tumor progression and the clinical prognosis of endometrial carcinoma. Gynecol Oncol. 148:383–392. 2018. View Article : Google Scholar | |
Maloy KJ and Powrie F: Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 474:298–306. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kaser A, Zeissig S and Blumberg RS: Inflammatory bowel disease. Annu Rev Immunol. 28:573–621. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mankertz J and Schulzke JD: Altered permeability in inflammatory bowel disease: Pathophysiology and clinical implications. Curr Opin Gastroenterol. 23:379–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welcker K, Martin A, Kölle P, Siebeck M and Gross M: Increased intestinal permeability in patients with inflammatory bowel disease. Eur J Med Res. 9:456–460. 2004.PubMed/NCBI | |
Doğan A, Wang ZD and Spencer J: E-cadherin expression in intestinal epithelium. J Clin Pathol. 48:143–146. 1995. View Article : Google Scholar : PubMed/NCBI | |
Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, Obermüller N, Otto HF and Autschbach F: Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol. 281:G216–G228. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jankowski JA, Bedford FK, Boulton RA, Cruickshank N, Hall C, Elder J, Allan R, Forbes A, Kim YS, Wright NA and Sanders DS: Alterations in classical cadherins associated with progression in ulcerative and Crohn's colitis. Lab Invest. 78:1155–1167. 1998.PubMed/NCBI | |
Karayiannakis AJ, Syrigos KN, Efstathiou J, Valizadeh A, Noda M, Playford RJ, Kmiot W and Pignatelli M: Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J Pathol. 185:413–418. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kucharzik T, Walsh SV, Chen J, Parkos CA and Nusrat A: Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 159:2001–2009. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Shen Y, Guo D, Yang D, Liu J, Fei X, Yang Y, Zhang B, Lin Z, Yang F, et al: EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat Commun. 7:130452016. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Takechi M, Kiyonari H, Shioi G, Tamura A and Tsukita S: Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut. 64:1529–1538. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sherman PM, Mitchell DJ and Cutz E: Neonatal enteropathies: Defining the causes of protracted diarrhea of infancy. J Pediatr Gastroenterol Nutr. 38:16–26. 2004. View Article : Google Scholar | |
Ranganathan S, Schmitt LA and Sindhi R: Tufting enteropathy revisited: The utility of MOC31 (EpCAM) immunohisto-chemistry in diagnosis. Am J Surg Pathol. 38:265–272. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khounlotham M, Kim W, Peatman E, Nava P, Medina-Contreras O, Addis C, Koch S, Fournier B, Nusrat A, Denning TL and Parkos CA: Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity. 37:563–573. 2012. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Liu C, Liu X, Trottier J, Beaudoin M, Zhang L, Pope C, Peng G, Barbier O, Zhong X, et al: H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology. 66:1183–1196. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zen Y, Vara R, Portmann B and Hadzic N: Childhood hepatocellular carcinoma: A clinicopathological study of 12 cases with special reference to EpCAM. Histopathology. 64:671–682. 2014. View Article : Google Scholar | |
Ueno M, Lee LK, Chhabra A, Kim YJ, Sasidharan R, Van Handel B, Wang Y, Kamata M, Kamran P, Sereti KI, et al: c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface. Dev Cell. 27:373–386. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakaya Y and Sheng G: EMT in developmental morphogenesis. Cancer Lett. 341:9–15. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z, Ma T, Zeng G, Yang S, Du J and Meng A: Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet. 20:3213–3226. 2011. View Article : Google Scholar : PubMed/NCBI | |
Al-Mayouf SM, Alswaied N, Alkuraya FS, Almehaidib A and Faqih M: Tufting enteropathy and chronic arthritis: A newly recognized association with a novel EpCAM gene mutation. J Pediatr Gastroenterol Nutr. 49:642–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bird LM, Sivagnanam M, Taylor S and Newbury RO: A new syndrome of tufting enteropathy and choanal atresia, with ophthalmologic, hematologic and hair abnormalities. Clin Dysmorphol. 16:211–221. 2007. View Article : Google Scholar : PubMed/NCBI |