1
|
Long CL and Humphrey MB: Osteoimmunology:
The expanding role of immunoreceptors in osteoclasts and bone
remodeling. Bonekey Rep. 1:pii2012. View Article : Google Scholar
|
2
|
Takayanagi H: Osteoimmunology in 2014:
Two-faced immunology-from osteogenesis to bone resorption. Nat Rev
Rheumatol. 11:74–76. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Arron JR and Choi Y: Bone versus immune
system. Nature. 408:535–536. 2000. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Maitra R, Follenzi A, Yaghoobian A,
Montagna C, Merlin S, Cannizzo ES, Hardin JA, Cobelli N, Stanley ER
and Santambrogio L: Dendritic cell-mediated in vivo bone
resorption. J Immunol. 185:1485–1491. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wakkach A, Mansour A, Dacquin R, Coste E,
Jurdic P, Carle GF and Blin-Wakkach C: Bone marrow microenvironment
controls the in vivo differentiation of murine dendritic cells into
osteo-clasts. Blood. 112:5074–5083. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rifas L and Weitzmann MN: A novel T cell
cytokine, secreted osteoclastogenic factor of activated T cells,
induces osteoclast formation in a RANKL-independent manner.
Arthritis Rheum. 60:3324–3335. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Karieb S and Fox SW: Suppression of T
cell-induced osteoclast formation. Biochem Biophys Res Commun.
436:619–624. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Adamopoulos IE and Mellins ED: Alternative
pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev
Rheumatol. 11:189–194. 2015. View Article : Google Scholar :
|
9
|
Criscitiello C, Viale G, Gelao L, Esposito
A, De Laurentiis M, De Placido S, Santangelo M, Goldhirsch A and
Curigliano G: Crosstalk between bone niche and immune system:
Osteoimmunology signaling as a potential target for cancer
treatment. Cancer Treat Rev. 41:61–68. 2015. View Article : Google Scholar
|
10
|
Ishii M and Saeki Y: Osteoclast cell
fusion: Mechanisms and molecules. Mod Rheumatol. 18:220–227. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Mochizuki A, Takami M, Miyamoto Y,
Nakamaki T, Tomoyasu S, Kadono Y, Tanaka S, Inoue T and Kamijo R:
Cell adhesion signaling regulates RANK expression in osteoclast
precursors. PLoS One. 7:e487952012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tomomura M, Suzuki R, Shirataki Y,
Sakagami H, Tamura N and Tomomura A: Rhinacanthin C inhibits
osteoclast differentiation and bone resorption: Roles of
TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling. PLoS One. 10:e01301742015.
View Article : Google Scholar
|
13
|
Tucci M, Ciavarella S, Strippoli S,
Brunetti O, Dammacco F and Silvestris F: Immature dendritic cells
from patients with multiple myeloma are prone to osteoclast
differentiation in vitro. Exp Hematol. 39:773–783.e1. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Rivollier A, Mazzorana M, Tebib J, Piperno
M, Aitsiselmi T, Rabourdin-Combe C, Jurdic P and Servet-Delprat C:
Immature dendritic cell transdifferentiation into osteoclasts: A
novel pathway sustained by the rheumatoid arthritis
microenvironment. Blood. 104:4029–4037. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gallois A, Lachuer J, Yvert G, Wierinckx
A, Brunet F, Rabourdin-Combe C, Delprat C, Jurdic P and Mazzorana
M: Genome-wide expression analyses establish dendritic cells as a
new osteoclast precursor able to generate bone-resorbing cells more
efficiently than monocytes. J Bone Miner Res. 25:661–672. 2010.
View Article : Google Scholar
|
16
|
Uchida R, Ashihara E, Sato K, Kimura S,
Kuroda J, Takeuchi M, Kawata E, Taniguchi K, Okamoto M, Shimura K,
et al: Gamma delta T cells kill myeloma cells by sensing mevalonate
metabolites and ICAM-1 molecules on cell surface. Biochem Biophys
Res Commun. 354:613–618. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Virginia GT, Robert T and Gilbert C:
Significance analysis of microarrays applied to the ionizing
radiation response. PNAS. 98:5116–5121. 2001. View Article : Google Scholar
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
19
|
Grcevic D, Lukić IK, Kovacić N, Ivcević S,
Katavić V and Marusić A: Activated T lymphocytes suppress
osteoclastogenesis by diverting early monocyte/macrophage
progenitor lineage commitment towards dendritic cell
differentiation through down-regulation of receptor activator of
nuclear factor-kappaB and c-Fos. Clin Exp Immunol. 146:146–158.
2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tyler CJ, Doherty DG, Moser B and Eberl M:
Human Vgamma9/Vdelta2 T cells: Innate adaptors of the immune
system. Cell Immunol. 296:10–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kabelitz D: γδ T-cells: Cross-talk between
innate and adaptive immunity. Cell Mol Life Sci. 68:2331–2333.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Oh Y, Oh I, Morimoto J, Uede T and
Morimoto A: Osteopontin has a crucial role in osteoclast-like
multinucleated giant cell formation. J Cell Biochem. 115:585–595.
2014. View Article : Google Scholar
|
23
|
Bozec A, Zaiss MM, Kagwiria R, Voll R,
Rauh M, Chen Z, Mueller-Schmucker S, Kroczek RA, Heinzerling L,
Moser M, et al: T cell costimulation molecules CD80/86 inhibit
osteoclast differentiation by inducing the IDO/tryptophan pathway.
Sci Transl Med. 6:235ra602014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pappalardo A and Thompson K: Activated γδ
T cells inhibit osteoclast differentiation and resorptive activity
in vitro. Clin Exp Immunol. 174:281–291. 2013.PubMed/NCBI
|
25
|
Cui Q, Shibata H, Oda A, Amou H, Nakano A,
Yata K, Hiasa M, Watanabe K, Nakamura S, Miki H, et al: Targeting
myeloma-osteoclast interaction with Vγ9Vδ2 T cells. Int J Hematol.
94:63–70. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nace G, Evankovich J, Eid R and Tsung A:
Dendritic cells and damage-associated molecular patterns:
Endogenous danger signals linking innate and adaptive immunity. J
Innate Immun. 4:6–15. 2012. View Article : Google Scholar
|
27
|
Desch AN, Gibbings SL, Clambey ET, Janssen
WJ, Slansky JE, Kedl RM, Henson PM and Jakubzick C: Dendritic cell
subsets require cis-activation for cytotoxic CD8 T-cell induction.
Nat Commun. 5:46742014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu X, Liu N, Wang Y, Pan LC, Wu D, Peng Q,
Zhang M, Wang HB and Sun WC: Tatarinan O, a lignin-like compound
from the roots of Acorus tatarinowii Schott inhibits osteoclast
differentiation through suppressing the expression of c-Fos and
NFATc1. Int Immunopharmacol. 34:212–219. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Baek JM, Park SH, Cheon YH, Ahn SJ, Lee
MS, Oh J and Kim JY: Esculetin attenuates receptor activator of
nuclear factor kappa-B ligand-mediated osteoclast differentiation
through c-Fos/nuclear factor of activated T-cells c1 signaling
pathway. Biochem Biophys Res Commun. 461:334–341. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wagner EF: Bone development and
inflammatory disease is regulated by AP-1 (Fos/Jun). Ann Rheum Dis.
69(Suppl 1): i86–i88. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Matsuo K, Owens JM, Tonko M, Elliott C,
Chambers TJ and Wagner EF: Fosl1 is a transcriptional target of
c-Fos during osteoclast differentiation. Nat Genet. 24:184–187.
2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim K, Lee SH, Ha Kim J, Choi Y and Kim N:
NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and
the dendritic cell-specific transmembrane protein (DC-STAMP). Mol
Endocrinol. 22:176–185. 2008. View Article : Google Scholar
|
33
|
Park SJ, Park DR, Bhattarai D, Lee K, Kim
J, Bae YS and Lee SY: 2-(trimethylammonium) ethyl
(R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses
osteoclast maturation and bone resorption by targeting
macrophage-colony stimulating factor signaling. Mol Cells.
37:628–635. 2014. View Article : Google Scholar : PubMed/NCBI
|