1
|
Shaw JE, Sicree RA and Zimmet PZ: Global
estimates of the prevalence of diabetes for 2010 and 2030. Diabetes
Res Clin Pract. 87:4–14. 2010. View Article : Google Scholar
|
2
|
Hematti P, Kim J, Stein AP and Kaufman D:
Potential role of mesenchymal stromal cells in pancreatic islet
transplantation. Transplant Rev (Orlando). 27:21–29. 2013.
View Article : Google Scholar
|
3
|
American Diabetes Association: Standards
of medical care in diabetes-2013. Diabetes Care. 36(Suppl 1):
S11–S66. 2013. View Article : Google Scholar
|
4
|
Larrañaga A, Docet MF and Garcia-Mayor RV:
Disordered eating behaviors in type 1 diabetic patients. World J
Diabetes. 2:189–195. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ryan EA, Paty BW, Senior PA, Bigam D,
Alfadhli E, Kneteman NM, Lakey JR and Shapiro AM: Five-year
follow-up after clinical islet transplantation. Diabetes.
54:2060–2069. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miyazaki S, Yamato E and Miyazaki J:
Regulated expression of pdx-1 promotes in vitro differentiation of
insulin-producing cells from embryonic stem cells. Diabetes.
53:1030–1037. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kroon E, Martinson LA, Kadoya K, Bang AG,
Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J,
et al: Pancreatic endoderm derived from human embryonic stem cells
generates glucose-responsive insulin-secreting cells in vivo. Nat
Biotechnol. 26:443–452. 2008. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Soria B, Skoudy A and Martin F: From stem
cells to beta cells: New strategies in cell therapy of diabetes
mellitus. Diabetologia. 44:407–415. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lumelsky N, Blondel O, Laeng P, Velasco I,
Ravin R and McKay R: Differentiation of embryonic stem cells to
insulin-secreting structures similar to pancreatic islets. Science.
292:1389–1394. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Krampera M, Franchini M, Pizzolo G and
Aprili G: Mesenchymal stem cells: From biology to clinical use.
Blood Transfus. 5:120–129. 2007.PubMed/NCBI
|
11
|
Gimble JM, Katz AJ and Bunnell BA:
Adipose-derived stem cells for regenerative medicine. Circ Res.
100:1249–1260. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Diaz-Prado S, Muiños-López E,
Hermida-Gómez T, Cicione C, Rendal-Vázquez ME, Fuentes-Boquete I,
de Toro FJ and Blanco FJ: Human amniotic membrane as an alternative
source of stem cells for regenerative medicine. Differentiation.
81:162–171. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gabr MM, Zakaria MM, Refaie AF, Khater SM,
Ashamallah SA, Ismail AM, El-Halawani SM and Ghoneim MA:
Differentiation of human bone marrow-derived mesenchymal stem cells
into insulin-producing cells: Evidence for further maturation in
vivo. Biomed Res Int. 2015:5758372015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun Y, Zhang M, Ji S and Liu L: Induction
differentiation of rabbit adipose-derived stromal cells into
insulin-producing cells in vitro. Mol Med Rep. 12:6835–6840. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kajiyama H, Hamazaki TS, Tokuhara M, Masui
S, Okabayashi K, Ohnuma K, Yabe S, Yasuda K, Ishiura S, Okochi H
and Asashima M: Pdx1-transfected adipose tissue-derived stem cells
differentiate into insulin-producing cells in vivo and reduce
hyperglycemia in diabetic mice. Int J Dev Biol. 54:699–705. 2010.
View Article : Google Scholar
|
16
|
Okere B, Alviano F, Costa R, Quaglino D,
Ricci F, Dominici M, Paolucci P, Bonsi L and Iughetti L: In vitro
differentiation of human amniotic epithelial cells into
insulin-producing 3D spheroids. Int J Immunopathol Pharmacol.
28:390–402. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Watanabe M, Yoneda M, Morohashi A, Hori Y,
Okamoto D, Sato A, Kurioka D, Nittami T, Hirokawa Y, Shiraishi T,
et al: Effects of Fe3O4 magnetic
nanoparticles on A549 cells. Int J Mol Sci. 14:15546–15560. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Figuerola A, Di Corato R, Manna L and
Pellegrino T: From iron oxide nanoparticles towards advanced
iron-based inorganic materials designed for biomedical
applications. Pharmacol Res. 62:126–143. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang D, Wang J, Wang Z, Wang R, Song L,
Zhang T, Lin X, Shi P, Xin H and Pang X: Polyethyleneimine-coated
Fe3O4 nanoparticles for efficient siRNA
Delivery to human mesenchymal stem cells derived from different
tissues. Sci Adv Mater. 7:1058–1064. 2015. View Article : Google Scholar
|
20
|
Hermanson O: Stem cells have different
needs for Rest. PloS Biol. 6:e2712008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Johnson DS, Mortazavi A, Myers RM and Wold
B: Genome-wide mapping of in vivo protein-DNA interactions.
Science. 316:1497–1502. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Martin D, Tawadros T, Meylan L,
Abderrahmani A, Condorelli DF, Waeber G and Haefliger JA: Critical
role of the transcriptional repressor neuron-restrictive silencer
factor in the specific control of connexin36 in insulin-producing
cell lines. J Biol Chem. 278:53082–53089. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li B, Wang S, Liu H, Liu D, Zhang J, Zhang
B, Yao H, Lv Y, Wang R, Chen L, et al: Neuronal restrictive
silencing factor silencing induces human amniotic fluid-derived
stem cells differentiation into insulin-producing cells. Stem Cells
Dev. 20:1223–1231. 2011. View Article : Google Scholar
|
24
|
Li H, Jiang F, Shi P, Zhang T, Liu XY, Lin
XW and Pang XN: In vitro reprogramming of rat bone marrow-derived
mesen-chymal stem cells into insulin-producing cells by genetically
manipulating negative and positive regulators. Biochem Bioph Res
Commun. 420:793–798. 2012. View Article : Google Scholar
|
25
|
Dayer D, Tabar MH, Moghimipour E, Tabandeh
MR, Ghadiri AA, Bakhshi EA, Orazizadeh M and Ghafari MA: Sonic
hedgehog pathway suppression and reactivation accelerates
differentiation of rat adipose-derived mesenchymal stromal cells
toward insulin-producing cells. Cytotherapy. 19:937–946. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hebrok M, Kim SK and Melton DA: Notochord
repression of endodermal Sonic hedgehog permits pancreas
development. Genes Dev. 12:1705–1713. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schwitzgebel VM, Mamin A, Brun T,
Ritz-Laser B, Zaiko M, Maret A, Jornayvaz FR, Theintz GE, Michielin
O, Melloul D and Philippe J: Agenesis of human pancreas due to
decreased half-life of insulin promoter factor 1. J Clin Endocrinol
Metab. 88:4398–4406. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-delta delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ,
Dorkin JR and Anderson DG: Non-viral vectors for gene-based
therapy. Nat Rev Genet. 15:541–555. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Allahverdi A, Abroun S, Jafarian A,
Soleimani M, Taghikhani M and Eskandari F: Differentiation of human
mesenchymal stem cells into insulin producing cells by using a
lentiviral vector carrying PDX1. Cell J. 17:231–242.
2015.PubMed/NCBI
|
31
|
Kemp DM, Lin JC and Habener JF: Regulation
of Pax4 paired homeodomain gene by neuron-restrictive silencer
factor. J Biol Chem. 278:35057–35062. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li HT, Jiang FX, Shi P, Zhang T, Liu XY,
Lin XW, San ZY and Pang XN: In vitro reprogramming of rat bmMSCs
into pancreatic endocrine-like cells. In Vitro Cell Dev Biol Anim.
53:157–166. 2017. View Article : Google Scholar
|