Anti‑apoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro
- Authors:
- Dong‑Ho Bak
- Jungtae Na
- Mi Ji Choi
- Byung Chul Lee
- Chang Taek Oh
- Jeom‑Yong Kim
- Hae Jung Han
- Moo Joong Kim
- Tae Ho Kim
- Beom Joon Kim
-
Affiliations: Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea, Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea, Fort Hays State University, Hays, KS 67601, USA, Division of Gastroenterology, Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon‑si, Gyeonggi 14647, Republic of Korea - Published online on: August 17, 2018 https://doi.org/10.3892/ijmm.2018.3830
- Pages: 2569-2583
-
Copyright: © Bak et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bernal W, Auzinger G, Dhawan A and Wendon J: Acute liver failure. Lancet. 376:190–201. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han DW: Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol. 8:961–965. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sathivel A, Balavinayagamani, Hanumantha Rao BR and Devaki T: Sulfated polysaccharide isolated from Ulva lactuca attenuates d-galactosamine induced DNA fragmentation and necrosis during liver damage in rats. Pharm Biol. 52:498–505. 2014. View Article : Google Scholar | |
Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M and Yoshimatsu H: Adiponectin protects LPS-induced liver injury through modulation of TNF-α in KK-Ay obese mice. Hepatology. 40:177–184. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Han M, Chen T, Yan W and Ning Q: Acute liver failure: Mechanisms of immune-mediated liver injury. Liver Int. 30:782–794. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sheriff SA, Shaik Ibrahim S, Devaki T, Chakraborty S, Agarwal S and Pérez-Sánchez H: Lycopene prevents mitochondrial dysfunction during d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in albino rats. J Proteome Res. 16:3190–3199. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Yin L, Quan H, Chu Y and Lu J: Hepatoprotective effects of kaempferol-3-O-α-l-arabinopyranosyl-7-O-α-l-rhamn opyranoside on d-Galactosamine and lipopolysaccharide caused hepatic failure in mice. Molecules. 22:E17552017. View Article : Google Scholar | |
Lee SB, Kang JW, Kim SJ, Ahn J, Kim J and Lee SM: Afzelin ameliorates D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure by modulating mitochondrial quality control and dynamics. Br J Pharmacol. 174:195–209. 2017. View Article : Google Scholar | |
Decker CW, Casian JG, Nguyen KT, Horton LA, Rao MP, Silkwood KH and Han D: The critical role of mitochondria in drug-induced liver injury. Molecules, Systems and Signaling in Liver Injury. Springer; pp. 159–181. 2017, View Article : Google Scholar | |
Nguyen T, Nioi P and Pickett CB: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 284:13291–13295. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bryan HK, Olayanju A, Goldring CE and Park BK: The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation. Biochem Pharmacol. 85:705–717. 2013. View Article : Google Scholar | |
Zhou R, Lin J and Wu D: Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. Biochim Biophys Acta. 1840:209–218. 2014. View Article : Google Scholar | |
Jiang T, Huang Z, Lin Y, Zhang Z, Fang D and Zhang DD: The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 59:850–860. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K and Yamamoto M: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 24:7130–7139. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bataille A and Manautou J: Nrf2: A potential target for new therapeutics in liver disease. Clin Pharmacol Ther. 92:340–348. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jian Z, Li K, Song P, Zhu G, Zhu L, Cui T, Liu B, Tang L, Wang X, Wang G, et al: Impaired activation of the Nrf2-ARE signaling pathway undermines H response: A possible mechanism for melanocyte degeneration in 2O2-induced oxidative stress vitiligo. J Invest Dermatol. 134:2221–2230. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gozuacik D and Kimchi A: Autophagy and cell death. Curr Top Dev Biol. 78:217–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tonello G, Daglio M, Zaccarelli N, Sottofattori E, Mazzei M and Balbi A: Characterization and quantitation of the active poly-nucleotide fraction (PDRN) from human placenta, a tissue repair stimulating agent. J Pharm Biomed Anal. 14:1555–1560. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sur TK, Biswas TK, Ali L and Mukherjee B: Anti-inflammatory and anti-platelet aggregation activity of human placental extract. Acta Pharmacol Sin. 24:187–192. 2003.PubMed/NCBI | |
Chakraborty PD and Bhattacharyya D: Isolation of fibronectin type III like peptide from human placental extract used as wound healer. J Chromatogr B Analyt Technol Biomed Life Sci. 818:67–73. 2005. View Article : Google Scholar : PubMed/NCBI | |
Choi JY, Lee K, Lee SM, Yoo SH, Hwang SG, Choi JY, Lee SW, Hwang JS, Kim KK, Kang HC, et al: Efficacy and safety of human placental extract for alcoholic and nonalcoholic steato-hepatitis: An open-label, randomized, comparative study. Biol Pharm Bull. 37:1853–1859. 2014. View Article : Google Scholar | |
Shimokobe H, Sumida Y, Tanaka S, Mori K, Kitamura Y, Fukumoto K, Kakutani A, Ohno T, Kanemasa K, Imai S, et al: Human placental extract treatment for non-alcoholic steato-hepatitis non-responsive to lifestyle intervention: A pilot study. Hepatol Res. 45:1034–1040. 2015. View Article : Google Scholar | |
Park S, Phark S, Lee M, Lim J and Sul D: Anti-oxidative and anti-inflammatory activities of placental extracts in benzo[a] pyrene-exposed rats. Placenta. 31:873–879. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camargo CA Jr, Madden JF, Gao W, Selvan RS and Clavien P: Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology. 26:1513–1520. 1997. View Article : Google Scholar : PubMed/NCBI | |
Okoh VO, Felty Q, Parkash J, Poppiti R and Roy D: Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One. 8:e542062013. View Article : Google Scholar : PubMed/NCBI | |
Jasek E, Lis GJ, Jasińska M, Jurkowska H and Litwin JA: Effect of histone deacetylase inhibitors trichostatin A and valproic acid on etoposide-induced apoptosis in leukemia cells. Anticancer Res. 32:2791–2799. 2012.PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar | |
Cassidy W and Reynolds T: Serum lactic dehydrogenase in the differential diagnosis of acute hepatocellular injury. J Clin Gastroenterol. 19:118–121. 1994. View Article : Google Scholar : PubMed/NCBI | |
Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J and Williams R: The systemic inflammatory response syndrome in acute liver failure. Hepatology. 32:734–739. 2000. View Article : Google Scholar : PubMed/NCBI | |
Guicciardi M and Gores GJ: Apoptosis: A mechanism of acute and chronic liver injury. Gut. 54:1024–1033. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stachlewitz RF, Seabra V, Bradford B, Bradham CA, Rusyn I, Germolec D and Thurman RG: Glycine and uridine prevent d-galactosamine hepatotoxicity in the rat: Role of kupffer cells. Hepatology. 29:737–745. 1999. View Article : Google Scholar : PubMed/NCBI | |
Thabrew MI, Hughes RD and McFarlane IG: Screening of hepa-toprotective plant components using a HepG2 cell cytotoxicity assay. J Pharm Pharmacol. 49:1132–1135. 1997. View Article : Google Scholar : PubMed/NCBI | |
González R, Ferrín G, Hidalgo AB, Ranchal I, López-Cillero P, Santos-Gónzalez M, López-Lluch G, Briceño J, Gómez MA, Poyato A, et al: N-acetylcysteine, coenzyme Q10 and superoxide dismutase mimetic prevent mitochondrial cell dysfunction and cell death induced by d-galactosamine in primary culture of human hepatocytes. Chem Biol Interact. 181:95–106. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li S, Childs EE, Kuharsky DK and Yin XM: Activation of pro-death Bcl-2 family proteins and mitochondria apoptosis pathway in tumor necrosis factor-α-induced liver injury. J Biol Chem. 276:27432–27440. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsov AV, Kehrer I, Kozlov AV, Haller M, Redl H, Hermann M, Grimm M and Troppmair J: Mitochondrial ROS production under cellular stress: Comparison of different detection methods. Anal Bioanal Chem. 400:2383–2390. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Giordano S and Zhang J: Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem J. 441:523–540. 2012. View Article : Google Scholar : | |
Yang Z and Klionsky DJ: Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar : | |
Liu GY, Jiang XX, Zhu X, He WY, Kuang YL, Ren K, Lin Y and Gou X: ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin. 36:1473–1479. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cichoż-Lach H and Michalak A: Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 20:8082–8091. 2014. View Article : Google Scholar | |
Jenner P: Oxidative stress in Parkinson's disease. Ann Neurol. 53(Suppl 3): S26–S38. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kujoth G, Hiona A, Pugh T, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, et al: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 309:481–484. 2005. View Article : Google Scholar : PubMed/NCBI | |
Radi E, Formichi P, Battisti C and Federico A: Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 42(Suppl 3): S125–S152. 2014. View Article : Google Scholar : PubMed/NCBI | |
Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T and Yoshikawa T: Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radic Biol Med. 33:798–806. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nowak M, Gaines GC, Rosenberg J, Minter R, Bahjat FR, Rectenwald J, MacKay SL, Edwards CK III and Moldawer LL: LPS-induced liver injury in D-galactosamine-sensitized mice requires secreted TNF-alpha and the TNF-p55 receptor. Am J Physiol Regul Integr Comp Physiol. 278:R1202–R1209. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Lian LH, Wan Y and Nan JX: Baicalein inhibits nuclear factor-κB and apoptosis via c-FLIP and MAPK in D-GalN/LPS induced acute liver failure in murine models. Chem Biol Interact. 188:526–534. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Ren F, Zhang H, Wen T, Piao Z, Zhou L, Zheng S, Zhang J, Chen Y, Han Y, et al: Inhibition of glycogen synthase kinase 3β ameliorates D-GalN/LPS-induced liver injury by reducing endoplasmic reticulum stress-triggered apoptosis. PloS One. 7:e452022012. View Article : Google Scholar | |
Wang H, Xu DX, Lv JW, Ning H and Wei W: Melatonin attenuates lipopolysaccharide (LPS)-induced apoptotic liver damage in D-galactosamine-sensitized mice. Toxicology. 237:49–57. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kawakatsu M, Urata Y, Goto S, Ono Y and Li TS: Placental extract protects bone marrow-derived stem/progenitor cells against radiation injury through anti-inflammatory activity. J Radiat Res. 54:268–276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park JY, Lee J, Jeong M, Min S, Kim SY, Lee H, Lim Y and Park HJ: Effect of Hominis Placenta on cutaneous wound healing in normal and diabetic mice. Nutri Res Pract. 8:404–409. 2014. View Article : Google Scholar | |
Lee KH, Kim TH, Lee WC, Kim SH, Lee SY and Lee SM: Anti-inflammatory and analgesic effects of human placenta extract. Nat Prod Res. 25:1090–1100. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee KW, Ji HM, Kim DW, Choi SM, Kim S and Yang EJ: Effects of Hominis placenta on LPS-induced cell toxicity in BV2 microglial cells. J Ethnopharmacol. 147:286–292. 2013. View Article : Google Scholar : PubMed/NCBI | |
Akagi H, Imamura Y, Makita Y, Nakamura H, Hasegawa N, Fujiwara SI and Wang PL: Evaluation of collagen type-1 production and anti-inflammatory activities of human placental extracts in human gingival fibroblasts. J Hard Tissue Biol. 25:277–281. 2016. View Article : Google Scholar | |
Watanabe S, Togashi S, Takahashi N and Fukui T: L-tryptophan as an antioxidant in human placenta extract. J Nutri Sci Vitaminol (Tokyo). 48:36–39. 2002. View Article : Google Scholar | |
Togashi SI, Takahashi N, Iwama M, Watanabe S, Tamagawa K and Fukui T: Antioxidative collagen-derived peptides in human-placenta extract. Placenta. 23:497–502. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rozanova S, Cherkashina Y, Repina S, Rozanova K and Nardid O: Protective effect of placenta extracts against nitrite-induced oxidative stress in human erythrocytes. Cell Mol Biol Lett. 17:240–248. 2012. View Article : Google Scholar : PubMed/NCBI | |
Halliwell B and Gutteridge JM: Free Radicals in Biology and Medicine. Oxford University Press; USA: 2015, View Article : Google Scholar | |
Wells PG and Winn LM: Biochemical toxicology of chemical teratogenesis. Crit Rev Biochem Mol Biol. 31:1–40. 1996. View Article : Google Scholar : PubMed/NCBI | |
Avissar N, Whitin JC, Allen PZ, Wagner DD, Liegey P and Cohen HJ: Plasma selenium-dependent glutathione peroxidase. Cell of origin and secretion. J Biol Chem. 264:15850–15855. 1989.PubMed/NCBI | |
Thomas EL, Learn DB, Jefferson MM and Weatherred W: Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils. J Biol Chem. 263:2178–2186. 1988.PubMed/NCBI | |
Kankofer M: Antioxidative defence mechanisms against reactive oxygen species in bovine retained and not-retained placenta: Activity of glutathione peroxidase, glutathione transferase, catalase and superoxide dismutase. Placenta. 22:466–472. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki H and Kada T: Restorative effects of human placenta extract in X-ray-irradiated mice. J Radiat Res. 23:403–410. 1982. View Article : Google Scholar : PubMed/NCBI | |
González R, Collado JA, Nell S, Briceño J, Tamayo MJ, Fraga E, Bernardos A, López-Cillero P, Pascussi JM, Rufián S, et al: Cytoprotective properties of α-tocopherol are related to gene regulation in cultured D-galactosamine-treated human hepato-cytes. Free Radic Biol Med. 43:1439–1452. 2007. View Article : Google Scholar | |
Siendones E, Fouad D, Abou-Elella AMKE, Quintero A, Barrera P and Muntané J: Role of nitric oxide in d-galactos-amine-induced cell death and its protection by PGE 1 in cultured hepatocytes. Nitric Oxide. 8:133–143. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mahmoud MF, Hamdan DI, Wink M and El-Shazly AM: Hepatoprotective effect of limonin, a natural limonoid from the seed of Citrus aurantium var. bigaradia, on D-galactosamine- induced liver injury in rats. Naunyn-Schmiedebergs Arch Pharmacol. 387:251–261. 2014. View Article : Google Scholar | |
Wang Y, Li Y, Xie J, Zhang Y, Wang J, Sun X and Zhang H: Protective effects of probiotic Lactobacillus casei Zhang against endotoxin-and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. Int Immunopharmacol. 15:30–37. 2013. View Article : Google Scholar | |
Xia X, Su C, Fu J, Zhang P, Jiang X, Xu D, Hu L, Song E and Song Y: Role of α-lipoic acid in LPS/d-GalN induced fulminant hepatic failure in mice: Studies on oxidative stress, inflammation and apoptosis. Int Immunopharmacol. 22:293–302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shin JW, Wang JH, Park HJ, Choi MK, Kim HG and Son CG: Herbal formula CGX ameliorates LPS/D-galactosamine-induced hepatitis. Food Chem Toxicol. 49:1329–1334. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee HJ, Oh YK, Rhee M, Lim JY, Hwang JY, Park YS, Kwon Y, Choi KH, Jo I, Park SI, et al: The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. J Mol Biol. 369:967–984. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu LM, Zhang JX, Luo J, Guo HX, Deng H, Chen JY and Sun SL: A role of cell apoptosis in lipopolysaccharide (LPS)-induced nonlethal liver injury in D-galactosamine (D-GalN)-sensitized rats. Dig Dis Sci. 53:1316–1324. 2008. View Article : Google Scholar | |
Soriano ME, Nicolosi L and Bernardi P: Desensitization of the permeability transition pore by cyclosporin A prevents activation of the mitochondrial apoptotic pathway and liver damage by tumor necrosis factor-alpha. J Biol Chem. 279:36803–36808. 2004. View Article : Google Scholar : PubMed/NCBI | |
Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T and Majima HJ: Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 7:106–118. 2007. View Article : Google Scholar : PubMed/NCBI | |
Farombi EO, Shrotriya S, Na HK, Kim SH and Surh YJ: Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol. 46:1279–1287. 2008. View Article : Google Scholar | |
Klaassen CD and Reisman SA: Nrf2 the rescue: Effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol. 244:57–65. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Shao L, Zhou C, Wang H and Guo J: Upregulation of Nrf2 expression in non-alcoholic fatty liver and steatohepatitis. Hepatogastroenterology. 58:2077–2080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao HD, Zhang F, Shen G, Li YB, Li YH, Jing HR, Ma LF, Yao JH and Tian XF: Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway. World J Gastroenterol. 16:3002–3010. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pan CW, Pan ZZ, Hu JJ, Chen WL, Zhou GY, Lin W, Jin LX and Xu CL: Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur J Pharmacol. 770:85–91. 2016. View Article : Google Scholar | |
Beyer TA, Xu W, Teupser D, auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW and Werner S: Impaired liver regeneration in Nrf2 knockout mice: Role of ROS-mediated insulin/IGF-1 resistance. EMBO J. 27:212–223. 2008. View Article : Google Scholar | |
Duarte TL, Caldas C, Santos AG, Silva-Gomes S, Santos-Gonçalves A, Martins MJ, Porto G and Lopes JM: Genetic disruption of NRF2 promotes the development of necroinflam-mation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol. 11:157–169. 2017. View Article : Google Scholar | |
Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N, Yılmaz I and Juturu V: β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food Chem Toxicol. 107:270–279. 2017. View Article : Google Scholar : PubMed/NCBI | |
Choi AM, Ryter SW and Levine B: Autophagy in human health and disease. N Engl J Med. 368:651–662. 2013. View Article : Google Scholar : PubMed/NCBI | |
Uchiyama Y, Shibata M, Koike M, Yoshimura K and Sasaki M: Autophagy-physiology and pathophysiology. Histochem Cell Biol. 129:407–420. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D and Moreau R: Autophagy in liver diseases. J Hepatol. 53:1123–1134. 2010. View Article : Google Scholar : PubMed/NCBI | |
Amir M, Zhao E, Fontana L, Rosenberg H, Tanaka K, Gao G and Czaja MJ: Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ. 20:878–887. 2013. View Article : Google Scholar : PubMed/NCBI | |
Donohue TM Jr: Autophagy and ethanol-induced liver injury. World J Gastroenterol. 15:1178–1185. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Wu F, Lin S, Pan X, Jin L, Lu T, Shi L, Wang Y, Xu A and Li X: Adiponectin protects against acetaminophen-induced mitochondrial dysfunction and acute liver injury by promoting autophagy in mice. J Hepatol. 61:825–831. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang CP and Lei HY: Autophagy induction in T cell-independent acute hepatitis induced by concanavalin A in SCID/NOD mice. Int J Immunopathol Pharmacol. 21:817–826. 2008. View Article : Google Scholar | |
Gotoh K, Lu Z, Morita M, Shibata M, Koike M, Waguri S, Dono K, Doki Y, Kominami E, Sugioka A, et al: Participation of autophagy in the initiation of graft dysfunction after rat liver transplantation. Autophagy. 5:351–360. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Lou J, Wen T, Yin J, Xu B, Ding W, Wang A, Liu D, Zhang C, Chen D and Li N: Depending on the stage of hepa-tosteatosis, p53 causes apoptosis primarily through either DRAM-induced autophagy or BAX. Liver Int. 33:1566–1574. 2013.PubMed/NCBI | |
Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, Carnuccio R and Kroemer G: Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle. 8:1571–1576. 2009. View Article : Google Scholar : PubMed/NCBI | |
Salazar M, Carracedo A, Salanueva ÍJ, Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, et al: Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest. 119:1359–1372. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xi H, Kurtoglu M, Liu H, Wangpaichitr M, You M, Liu X, Savaraj N and Lampidis TJ: 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol. 67:899–910. 2011. View Article : Google Scholar : | |
Liu K, Shi Y, Guo X, Wang S, Ouyang Y, Hao M, Liu D, Qiao L, Li N, Zheng J and Chen D: CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis. 5:e13232014. View Article : Google Scholar : PubMed/NCBI | |
Tuñón MJ, San-Miguel B, Crespo I, Laliena A, Vallejo D, Álvarez M, Prieto J and González-Gallego J: Melatonin treatment reduces endoplasmic reticulum stress and modulates the unfolded protein response in rabbits with lethal fulminant hepatitis of viral origin. J Pineal Res. 55:221–228. 2013. View Article : Google Scholar : PubMed/NCBI |