1
|
Patnaik JL, Byers T, DiGuiseppi C, Dabelea
D and Denberg TD: Cardiovascular disease competes with breast
cancer as the leading cause of death for older females diagnosed
with breast cancer: A retrospective cohort study. Breast Cancer
Res. 13:R642011. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Cancer Genome Atlas Network: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cheang MC, Voduc D, Bajdik C, Leung S,
McKinney S, Chia SK, Perou CM and Nielsen TO: Basal-like breast
cancer defined by five biomarkers has superior prognostic value
than triple-negative phenotype. Clin Cancer Res. 14:1368–1376.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Oualla K, El-Zawahry HM, Arun B, Reuben
JM, Woodward WA, Gamal El-Din H, Lim B, Mellas N, Ueno NT and Fouad
TM: Novel therapeutic strategies in the treatment of
triple-negative breast cancer. Ther Adv Med Oncol. 9:493–511. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Brasó-Maristany F, Filosto S, Catchpole S,
Marlow R, Quist J, Francesch-Domenech E, Plumb DA, Zakka L,
Gazinska P, Liccardi G, et al: PIM1 kinase regulates cell death,
tumor growth and chemotherapy response in triple-negative breast
cancer. Nat Med. 22:1303–1313. 2016. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Rakha EA, Reis-Filho JS and Ellis IO:
Basal-like breast cancer: A critical review. J Clin Oncol.
26:2568–2581. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu XC, Zhang J, Xu BH, Cai L, Ragaz J,
Wang ZH, Wang BY, Teng YE, Tong ZS, Pan YY, et al: Cisplatin plus
gemcitabine versus paclitaxel plus gemcitabine as first-line
therapy for metastatic triple-negative breast cancer (CBCSG006): A
randomised, open-label, multicentre, phase 3 trial. Lancet Oncol.
16:436–446. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pruefer FG, Lizarraga F, Maldonado V and
Melendez-Zajgla J: Participation of Omi Htra2 serine-protease
activity in the apoptosis induced by cisplatin on SW480 colon
cancer cells. J Chemother. 20:348–354. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rottenberg S, Nygren AO, Pajic M, van
Leeuwen FW, van der Heijden I, van de Wetering K, Liu X, de Visser
KE, Gilhuijs KG, van Tellingen O, et al: Selective induction of
chemotherapy resistance of mammary tumors in a conditional mouse
model for hereditary breast cancer. Proc Natl Acad Sci USA.
104:12117–12122. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar
|
12
|
Brozovic A and Osmak M: Activation of
mitogen-activated protein kinases by cisplatin and their role in
cisplatin-resistance. Cancer Lett. 251:1–16. 2007. View Article : Google Scholar
|
13
|
Zhou BP, Liao Y, Xia W, Spohn B, Lee MH
and Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by
Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat
Cell Biol. 3:245–252. 2001. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Karlsson O, Thor S, Norberg T, Ohlsson H
and Edlund T: Insulin gene enhancer binding protein Isl-1 is a
member of a novel class of proteins containing both a homeo- and a
Cys-His domain. Nature. 344:879–882. 1990. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hobert O and Westphal H: Functions of
LIM-homeobox genes. Trends Genet. 16:75–83. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guo C, Wang W, Shi Q, Chen P and Zhou C:
An abnormally high expression of ISL-1 represents a potential
prognostic factor in gastric cancer. Hum Pathol. 46:1282–1289.
2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shin E, Lee Y and Koo JS: Differential
expression of the epigenetic methylation-related protein DNMT1 by
breast cancer molecular subtype and stromal histology. J Transl
Med. 14:872016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak and Schmittgen: Analysis of relative
gene expression data using real-time quantitative PCR and the
2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
19
|
Elston CW and Ellis IO: Pathological
prognostic factors in breast cancer. The value of histologic grade
in breast cancer: Experience from a large study with long term
follow-up. Histopathology. 19:403–410. 1991. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kong X, Liu W and Kong Y: Roles and
expression profiles of long non-coding RNAs in triple-negative
breast cancers. J Cell Mol Med. 22:390–394. 2018. View Article : Google Scholar
|
21
|
Hansel DE, Rahman A, Hidalgo M, Thuluvath
PJ, Lillemoe KD, Schulick R, Ku JL, Park JG, Miyazaki K, Ashfaq R,
et al: Identification of novel cellular targets in biliary tract
cancers using global gene expression technology. Am J Pathol.
163:217–229. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schmitt AM, Riniker F, Anlauf M, Schmid S,
Soltermann A, Moch H, Heitz PU, Klöppel G, Komminoth P and Perren
A: Islet 1 (Isl1) expression is a reliable marker for pancreatic
endocrine tumors and their metastases. Am J Surg Pathol.
32:420–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Erlenbach-Wünsch K, Haller F, Taubert H,
Wurl P, Hartmann A and Agaimy A: Expression of the LIM homeobox
domain transcription factor ISL1 (Islet-1) is frequent in
rhabdomyosarcoma but very limited in other soft tissue sarcoma
types. Pathology. 46:289–295. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shi Q, Wang W, Jia Z, Chen P, Ma K and
Zhou C: ISL1, a novel regulator of CCNB1, CCNB2 and c-MYC genes,
promotes gastric cancer cell proliferation and tumor growth.
Oncotarget. 7:36489–36500. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Schlotter CM, Tietze L, Vogt U, Heinsen CV
and Hahn A: Ki67 and lymphocytes in the pretherapeutic core biopsy
of primary invasive breast cancer: Positive markers of therapy
response prediction and superior survival. Horm Mol Biol Clin
Investig. Sep 22–2017, (Epub ahead of print). doi: https://doi.org/10.1515/hmbci-2017-0022.
View Article : Google Scholar
|
26
|
Wein L and Loi S: Mechanisms of resistance
of chemotherapy in early-stage triple negative breast cancer
(TNBC). Breast. 34(Suppl 1): S27–S30. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gómez-Miragaya J, Palafox M, Paré L, Yoldi
G, Ferrer I, Vila S, Galván P, Pellegrini P, Pérez-Montoyo H, Igea
A, et al: Resistance to taxanes in triple-negative breast cancer
associates with the dynamics of a CD49f+ tumor-initiating
population. Stem Cell Reports. 8:1392–1407. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Saxena A, Viswanathan S, Moshynska O,
Tandon P, Sankaran K and Sheridan DP: Mcl-1 and Bcl-2/Bax ratio are
associated with treatment response but not with Rai stage in B-cell
chronic lymphocytic leukemia. Am J Hematol. 75:22–33. 2004.
View Article : Google Scholar
|
29
|
Chen L, Cui H, Fang J, Deng H, Kuang P,
Guo H, Wang X and Zhao L: Glutamine deprivation plus BPTES alters
etoposide- and cisplatin-induced apoptosis in triple negative
breast cancer cells. Oncotarget. 7:54691–54701. 2016.PubMed/NCBI
|
30
|
Liu S, Ren B, Gao H, Liao S, Zhai YX, Li
S, Su XJ, Jin P, Stroncek D, Xu Z, et al: Over-expression of BAG-1
in head and neck squamous cell carcinomas (HNSCC) is associated
with cisplatin-resistance. J Transl Med. 15:1892017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wen Q, Liu Y, Lyu H, Xu X, Wu Q, Liu N,
Yin Q, Li J and Sheng X: Long noncoding RNA GAS5, which acts as a
tumor suppressor via microRNA 21, regulates cisplatin resistance
expression in cervical cancer. Int J Gynecol Cancer. 27:1096–1108.
2017. View Article : Google Scholar : PubMed/NCBI
|