1
|
Sa hoo S, Meijles DN, Ghouleh I A, Tandon
M, Cifuentes-Pagano E, Sembrat J, Rojas M, Goncharova E and Pagano
PJ: MEF2C-MYOCD and Leiomodin1 suppression by miRNA-214 promotes
smooth muscle cell phenotype switching in pulmonary arterial
hypertension. PLoS One. 11:–e0153780. 2016.
|
2
|
Farber HW and Loscalzo J: Mechanisms of
disease: Pulmonary arterial hypertension. N Engl J Med.
351:1655–1665. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tuder RM, Marecki JC, Richter A,
Fijalkowska I and Flores S: Pathology of pulmonary hypertension.
Clin Chest Med. 28:23–42. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Morrell NW, Adnot S, Archer SL, Dupuis J,
Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA,
Weissmann N, et al: Cellular and molecular basis of pulmonary
arterial hypertension. J Am Coll Cardiol. 54:S20–S31. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hadri L, Kratlian RG, Benard L, Maron BA,
Dorfmüller P, Ladage D, Guignabert C, Ishikawa K, Aguero J, Ibanez
B, et al: Therapeutic efficacy of AAV1.SERCA2a in
monocrotaline-induced pulmonary arterial hypertension. Circulation.
128:512–523. 2013. View Article : Google Scholar
|
6
|
Rubin LJ, Simonneau G, Badesch D, Galiè N,
Humbert M, Keogh A, Massaro J, Matucci Cerinic M, Sitbon O and
Kymes S: The study of risk in pulmonary arterial hypertension. Eur
Respir Rev. 21:234–238. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Farh KK, Grimson A, Jan C, Lewis BP,
Johnston WK, Lim LP, Burge CB and Bartel DP: The widespread impact
of mammalian micrornas on mrna repression and evolution. Science.
310:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Arunachalam G, Upadhyay R, Ding H and
Triggle CR: MicroRNA signature and sardiovascular dysfunction. J
Cardiovasc Pharmacol. 65:419–29. 2015. View Article : Google Scholar
|
9
|
Bienertova-Vasku J, Novak J and Vasku A:
MicroRNAs in pulmonary arterial hypertension: Pathogenesis,
diagnosis and treatment. J Am Soc Hypertens. 9:221–34. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sharma S, Umar S, Potus F, Iorga A, Wong
G, Meriwether D, Breuils-Bonnet S, Mai D, Navab K, Ross D, et al:
ApoA-I mimetic peptide 4F rescues pulmonary hypertension by
inducing microRNA-193-3p. Circulation. 130:776–785. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Courboulin A, Paulin R, Giguere NJ,
Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher
S, Côté J, et al: Role for miR-204 in human pulmonary arterial
hypertension. J Exp Med. 208:535–548. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qian Z, Li Y, Chen J, Li X and Gou D:
miR-4632 mediates PDGF-BB-induced proliferation and antiapoptosis
of human pulmonary artery smooth muscle cells via targeting cJUN.
Am J Physiol Cell Physiol. 313:C380–C391. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lu Z, Li S, Zhao S and Fa X: Upregulated
miR-17 regulates hypoxia-mediated human pulmonary artery smooth
muscle cell proliferation and apoptosis by targeting mitofusin 2.
Med Sci Monit. 22:3301–3308. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Elshafei A, Shaker O, Abd-El-Motaal O and
Salman T: The expression profiling of serum miR-92a, miR-375, and
miR-760 in colorectal cancer: An Egyptian study. Tumor Biol.
39:10104283177057652017. View Article : Google Scholar
|
15
|
Hu SH, Wang CH, Huang ZJ, Liu F, Xu CW, Li
XL and Chen GQ: miR-760 mediates chemoresistance through inhibition
of epithelial mesenchymal transition in breast cancer cells. Eur
Rev Med Pharmacol Sci. 20:5002–5008. 2016.PubMed/NCBI
|
16
|
Hao H, Gabbiani G and Bochaton-Piallat ML:
Arterial smooth muscle cell heterogeneity: Implications for
atherosclerosis and restenosis development. Arterioscler Thromb
Vasc Biol. 23:1510–1520. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sysol JR, Chen J, Singla S, Zhao S,
Comhair S, Natarajan V and Machado RF: MicroRNA-1 is decreased by
hypoxia and contributes to the development of pulmonary vascular
remodeling via regulation of sphingosine kinase 1. Am J Physiol
Lung Cell Mol Physiol. 314:L461–L472. 2018. View Article : Google Scholar
|
18
|
Aytekin M, Comhair SA, de la Motte C,
Bandyopadhyay SK, Farver CF, Hascall VC, Erzurum SC and Dweik RA:
High levels of hyaluronan in idiopathic pulmonary arterial
hypertension. Am J Physiol Lung Cell Mol Physiol. 295:L789–L799.
2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (-Delta Delta C(T) method. Method. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Mizuno S, Bogaard HJ, Kraskauskas D,
Alhussaini A, Gomez-Arroyo J, Voelkel NF and Ishizaki T: p53 gene
deficiency promotes hypoxia-induced pulmonary hypertension and
vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol.
300:L753–L761. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma J, Liang S, Wang Z, Zhang L, Jiang J,
Zheng J, Yu L, Zheng X, Wang R and Zhu D: ROCK pathway participates
in the processes that 15-hydroxyeicosatetraenoic acid (15-HETE)
mediated the pulmonary vascular remodeling induced by hypoxia in
rat. J Cell Physiol. 222:82–94. 2010. View Article : Google Scholar
|
22
|
Jalali S, Ramanathan GK, Parthasarathy PT,
Aljubran S, Galam L, Yunus A, Garcia S, Cox RR Jr, Lockey RF and
Kolliputi N: Mir-206 regulates pulmonary artery smooth muscle cell
proliferation and differentiation. PLoS One. 7:e468082012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective mircoRNA target sites in mammalian mRNA.
Elife. 4:2015. View Article : Google Scholar
|
24
|
de Jesus Perez V, Yuan K, Alastalo TP,
Spiekerkoetter E and Rabinovitch M: Targeting the Wnt signaling
pathways in pulmonary arterial hypertension. Drug Discov Today.
19:1270–1276. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Anwar A, Li M, Frid MG, Kumar B,
Gerasimovskaya EV, Riddle SR, McKeon BA, Thukaram R, Meyrick BO,
Fini MA and Stenmark KR: Osteopontin is an endogenous modulator of
the constitutively activated phenotype of pulmonary adventitial
fibroblasts in hypoxic pulmonary hypertension. Am J Physiol Lung
Cell Mol Physiol. 303:L1–L11. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
McLaughlin VV, Archer SL, Badesch DB,
Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH,
Rosenson RS, et al: ACCF/AHA 2009 expert consensus document on
pulmonary hypertension a report of the American College of
Cardiology Foundation Task Force on Expert Consensus Documents and
the American Heart Association developed in collaboration with the
American College of Chest Physicians; American Thoracic Society,
Inc.; and the Pulmonary Hypertension Association. J Am Coll
Cardiol. 53:1573–1619. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu A, Philip J, Vinnakota KC, Van den
Bergh F, Tabima DM, Hacker T, Beard DA and Chesler NC: Estrogen
maintains mitochondrial content and function in the right ventricle
of rats with pulmonary hypertension. Physiol Rep. 5:e131572017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Jin H, Wang Y, Zhou L, Liu L, Zhang P,
Deng W and Yuan Y: Melatonin attenuates hypoxic pulmonary
hypertension by inhibiting the inflammation and the proliferation
of pulmonary arterial smooth muscle cells. J Pineal Res.
57:442–450. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Welsh DJ and Peacock AJ: Cellular
responses to hypoxia in the pulmonary circulation. High Alt Med
Biol. 14:111–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cui C, Zhang H, Guo LN, Zhang X, Meng L,
Pan X and Wei Y: Inhibitory effect of NBL1 on PDGF-BB-induced human
PASMC proliferation through blockade of PDGFβ-p38MAPK pathway.
Biosci Rep. 36:e003742016. View Article : Google Scholar
|
31
|
Stenmark KR, Meyrick B, Galie N, Mooi WJ
and McMurtry IF: Animal models of pulmonary arterial hypertension:
The hope for etiological discovery and pharmacological cure. Am J
Physiol Lung Cell Mol Physiol. 297:L1013–L1032. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yuan JX and Rubin LJ: Pathogenesis of
pulmonary arterial hypertension: The need for multiple hits.
Circulation. 111:534–538. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Karbowski M, Norris KL, Cleland MM, Jeong
SY and Youle RJ: Role of Bax and Bak in mitochondrial
morphogenesis. Nature. 443:658–662. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Goncharova EA, Ammit AJ, Irani C, Carroll
RG, Eszterhas AJ, Panettieri RA and Krymskaya VP: PI3K is required
for proliferation and migration of human pulmonary vascular smooth
muscle cells. Am J Physiol Lung Cell Mol Physiol. 283:L354–L363.
2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang YC, Lin S and Yang QW: Toll-like
receptors in cerebral ischemic inflammatory injury. J
Neuroinflammation. 8:1342011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ma L, Ambalavanan N, Liu H, Sun Y, Jhala
N, Bradley WE, Dell'Italia LJ, Michalek S, Wu H, Steele C, Benza
RL, Chen Y, et al: TLR4 regulates pulmonary vascular homeostasis
and remodeling via redox signaling. Front Biosci. 21:397–409. 2016.
View Article : Google Scholar
|