1
|
Kim JJ, Lipatova Z and Segev N: TRAPP
complexes in secretion and autophagy. Front Cell Dev Biol.
4:202016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yip CK, Berscheminski J and Walz T:
Molecular architecture of the TRAPPII complex and implications for
vesicle tethering. Nat Struct Mol Biol. 17:1298–1304. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zong M, Satoh A, Yu MK, Siu KY, Ng WY,
Chan HC, Tanner JA and Yu S: TRAPPC9 mediates the interaction
between p150 and COPII vesicles at the target membrane. PLoS One.
7:e299952012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mohamoud HS, Ahmed S, Jelani M, Alrayes N,
Childs K, Vadgama N, Almramhi MM, Al-Aama JY, Goodbourn S and Nasir
J: A missense mutation in TRAPPC6A leads to build-up of the
protein, in patients with a neurodevelopmental syndrome and
dysmorphic features. Sci Rep. 8:20532018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mir A, Kaufman L, Noor A, Motazacker MM,
Jamil T, Azam M, Kahrizi K, Rafiq MA, Weksberg R, Nasr T, et al:
Identification of mutations in TRAPPC9, which encodes the NIK- and
IKK-beta-binding protein, in nonsyndromic autosomal-recessive
mental retardation. Am J Hum Genet. 85:909–915. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schou KB, Morthorst SK, Christensen ST and
Pedersen LB: Identification of conserved, centrosome-targeting ASH
domains in TRAPPII complex subunits and TRAPPC8. Cilia. 3:62014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zeytuni N and Zarivach R: Structural and
functional discussion of the tetra-trico-peptide repeat, a protein
interaction module. Structure. 20:397–405. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Clairfeuille T, Norwood SJ, Qi X, Teasdale
RD and Collins BM: Structure and membrane binding properties of the
endosomal tetratricopeptide repeat (TPR) domain-containing sorting
nexins SNX20 and SNX21. J Biol Chem. 290:14504–14517. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hwang JY, Ahn SJ, Kwon MG, Seo JS, Hwang
SD and Son MH: Interferon-induced protein 56 (IFI56) is induced by
VHSV infection but not by bacterial infection in olive flounder
(paralichthys olivaceus). Fish Shellfish Immunol. 66:382–389. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ponting CP: A novel domain suggests a
ciliary function for ASPM, a brain size determining gene.
Bioinformatics. 22:1031–1035. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y, Bitner D, Pontes Filho AA, Li F,
Liu S, Wang H, Yang F, Adhikari S, Gordon J, Srinivasan S and Hu W:
Expression and function of NIK- and IKK2-binding protein (NIBP) in
mouse enteric nervous system. Neurogastroenterol Motil. 26:77–97.
2014. View Article : Google Scholar :
|
12
|
Sacher M, Barrowman J, Schieltz D, Yates
JR III and Ferro-Novick S: Identification and characterization of
five new subunits of TRAPP. Eur J Cell Biol. 79:71–80. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Mochida GH, Mahajnah M, Hill AD,
Basel-Vanagaite L, Gleason D, Hill RS, Bodell A, Crosier M,
Straussberg R and Walsh CA: A truncating mutation of TRAPPC9 is
associated with autosomal-recessive intellectual disability and
postnatal microcephaly. Am J Hum Genet. 85:897–902. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sacher M, Jiang Y, Barrowman J, Scarpa A,
Burston J, Zhang L, Schieltz D, Yates JR III, Abeliovich H and
Ferro-Novick S: TRAPP, a highly conserved novel complex on the
cis-Golgi that mediates vesicle docking and fusion. EMBO J.
17:2494–2503. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cai H, Zhang Y, Pypaert M, Walker L and
Ferro-Novick S: Mutants in trs120 disrupt traffic from the early
endosome to the late golgi. J Cell Biol. 171:823–833. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Barrowman J, Sacher M and Ferro-Novick S:
TRAPP stably associates with the golgi and is required for vesicle
docking. EMBO J. 19:862–869. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zahoor MA, Yamane D, Mohamed YM, Suda Y,
Kobayashi K, Kato K, Tohya Y and Akashi H: Bovine viral diarrhea
virus non-structural protein 5A interacts with NIK- and
IKKbeta-binding protein. J Gen Virol. 91:1939–1948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu S and Liang Y: A trapper keeper for
TRAPP, its structures and functions. Cell Mol Life Sci.
69:3933–3944. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sacher M, Barrowman J, Wang W, Horecka J,
Zhang Y, Pypaert M and Ferro-Novick S: TRAPP I implicated in the
specificity of tethering in ER-to-golgi transport. Mol Cell.
7:433–442. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi C, Davey M, Schluter C, Pandher P,
Fang Y, Foster LJ and Conibear E: Organization and assembly of the
TRAPPII complex. Traffic. 12:715–725. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu WH, Pendergast JS, Mo XM, Brambilla R,
Bracchi-Ricard V, Li F, Walters WM, Blits B, He L, Schaal SM and
Bethea JR: NIBP, a novel NIK and IKK(beta)-binding protein that
enhances NF-(kappa)B activation. J Biol Chem. 280:29233–29241.
2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Barrowman J, Bhandari D, Reinisch K and
Ferro-Novick S: TRAPP complexes in membrane traffic: Convergence
through a common rab. Nat Rev Mol Cell Biol. 11:759–763. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Delic M, Valli M, Graf AB, Pfeffer M,
Mattanovich D and Gasser B: The secretory pathway: Exploring yeast
diversity. FEMS Microbiol Rev. 37:872–914. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zou S, Chen Y, Liu Y, Segev N, Yu S, Liu
Y, Min G, Ye M, Zeng Y, Zhu X, et al: Trs130 participates in
autophagy through GTPases Ypt31/32 in saccharomyces cerevisiae.
Traffic. 14:233–246. 2013. View Article : Google Scholar :
|
25
|
Montpetit B and Conibear E: Identification
of the novel TRAPP associated protein Tca17. Traffic. 10:713–723.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Scrivens PJ, Shahrzad N, Moores A, Morin
A, Brunet S and Sacher M: TRAPPC2L is a novel, highly conserved
TRAPP-interacting protein. Traffic. 10:724–736. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yamasaki A, Menon S, Yu S, Barrowman J,
Meerloo T, Oorschot V, Klumperman J, Satoh A and Ferro-Novick S:
mTrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF
that binds to COPI-coated vesicles. Mol Biol Cell. 20:4205–4215.
2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Israel LP, Benharoch D, Gopas J and
Goldbart AD: A pro-inflammatory role for nuclear factor kappa B in
childhood obstructive sleep apnea syndrome. Sleep. 36:1947–1955.
2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Brasier AR: The NF-kappaB regulatory
network. Cardiovasc Toxicol. 6:111–130. 2006. View Article : Google Scholar
|
30
|
Hayden MS and Ghosh S: Shared principles
in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sun SC: The noncanonical NF-κB pathway.
Immunol Rev. 246:125–140. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sun SC: Non-canonical NF-kappaB signaling
pathway. Cell Res. 21:71–85. 2011. View Article : Google Scholar
|
33
|
Abbasi AA, Blaesius K, Hu H, Latif Z,
Picker-Minh S, Khan MN, Farooq S, Khan MA and Kaindl AM:
Identification of a novel homozygous TRAPPC9 gene mutation causing
non-syndromic intellectual disability, speech disorder, and
secondary micro-cephaly. Am J Med Genet B Neuropsychiatr Genet.
174:839–845. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Najmabadi H, Motazacker MM, Garshasbi M,
Kahrizi K, Tzschach A, Chen W, Behjati F, Hadavi V, Nieh SE,
Abedini SS, et al: Homozygosity mapping in consanguineous families
reveals extreme heterogeneity of non-syndromic autosomal recessive
mental retardation and identifies 8 novel gene loci. Hum Genet.
121:43–48. 2007. View Article : Google Scholar
|
35
|
Philippe O, Rio M, Carioux A, Plaza JM,
Guigue P, Molinari F, Boddaert N, Bole-Feysot C, Nitschke P, Smahi
A, et al: Combination of linkage mapping and microarray-expression
analysis identifies NF-kappaB signaling defect as a cause of
autosomal-recessive mental retardation. Am J Hum Genet. 85:903–908.
2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kakar N, Goebel I, Daud S, Nürnberg G,
Agha N, Ahmad A, Nürnberg P, Kubisch C, Ahmad J and Borck G: A
homozygous splice site mutation in TRAPPC9 causes intellectual
disability and microcephaly. Eur J Med Genet. 55:727–731. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Marangi G, Leuzzi V, Manti F, Lattante S,
Orteschi D, Pecile V, Neri G and Zollino M: TRAPPC9-related
autosomal recessive intellectual disability: Report of a new
mutation and clinical phenotype. Eur J Hum Genet. 21:229–232. 2013.
View Article : Google Scholar :
|
38
|
Wattacheril J, Lavine JE, Chalasani NP,
Guo X, Kwon S, Schwimmer J, Molleston JP, Loomba R, Brunt EM, Chen
YI, et al: Genome-wide associations related to hepatic histology in
nonalcoholic fatty liver disease in hispanic boys. J Pediatr.
190:100–107.e102. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Liu S, Wang H, Yang W, Li F, Yang
F, Yu D, Ramsey FV, Tuszyski GP and Hu W: Elevated NIBP/TRAPPC9
mediates tumorigenesis of cancer cells through NFκB signaling.
Oncotarget. 6:6160–6178. 2015.PubMed/NCBI
|
40
|
Li C, Luo X, Zhao S, Siu GK, Liang Y, Chan
HC, Satoh A and Yu SS: COPI-TRAPPII activates Rab18 and regulates
its lipid droplet association. EMBO J. 36:441–457. 2017. View Article : Google Scholar
|
41
|
Salamat MK, Dron M, Chapuis J, Langevin C
and Laude H: Prion propagation in cells expressing PrP
glycosylation mutants. J Virol. 85:3077–3085. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Thellmann M, Rybak K, Thiele K, Wanner G
and Assaad FF: Tethering factors required for cytokinesis in
arabidopsis. Plant Physiol. 154:720–732. 2010. View Article : Google Scholar : PubMed/NCBI
|