1
|
Siow SL, Mahendran HA, Wong CM, Hardin M
and Luk TL: Laparoscopic versus open repair of perforated peptic
ulcer: Improving outcomes utilizing a standardized technique. Asian
J Surg. 41:136–142. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Seims AD, VanHouwelingen L, Mead J, Mao S,
Loh A, Sandoval JA, Davidoff AM, Wu J and Wang WC: Operative and
immediate postoperative differences between traditional multiport
and reduced port laparoscopic total splenectomy in pediatric
patients. J Laparoendosc Adv Surg Tech A. 27:206–210. 2017.
View Article : Google Scholar
|
3
|
Jin B, Chen MT, Fei YT, Du SD and Mao YL:
Safety and efficacy for laparoscopic versus open hepatectomy: A
meta-analysis. Surg Oncol. 27:A26–A34. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Menes T and Spivak H: Laparoscopy:
Searching for the proper insufflation gas. Surg Endosc.
14:1050–1056. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen X, Liu H, Feng L and Liu Y: Effect of
carbon dioxide pneumoperitoneal pressure on the ultrastructure of
implanted endometriotic lesions in a rat model. Eur J Obstet
Gynecol Reprod Biol. 171:319–324. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hejazi M, Pedram MS, Ashegh H, Jafari N,
Ghazisaeedi F and Abdi M: Evaluation of effects of intraperitoneal
CO2 pressure in laparoscopic operations on kidney,
pancreas, liver and spleen in dogs. Iran Red Crescent Med J.
15:809–812. 2013. View Article : Google Scholar
|
7
|
Liu Y, Cao W, Liu Y, Wang Y, Lang R, Yue Y
and Wu AS: Changes in duration of action of rocuronium following
decrease in hepatic blood flow during pneumoperitoneum for
laparoscopic gynaecological surgery. Bmc Anesthesiol. 17:452017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sassa N, Hattori R, Yamamoto T, Kato M,
Komatsu T, Matsukawa Y, Funahashi Y and Gotoh M: Direct
visualization of renal hemodynamics affected by carbon
dioxide-induced pneumoperitoneum. Urology. 73:311–315. 2009.
View Article : Google Scholar
|
9
|
Lee JY and Choi SH: Results of hepatic and
renal function tests to different CO2 pneumoperitoneum
conditions: An experimental capnoperitoneum study in dogs. Res Vet
Sci. 101:1–5. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Akdemir A, Taylan E, Sahin C, Ozgurel B,
Karlitepe A, Zekioglu O and Ercan G: The impact of carbon dioxide
pneumoperitoneum on ovarian ischemia-reperfusion injury during
iaparoscopic surgery: A preliminary study. J Minim Invasive
Gynecol. 25:638–643. 2018. View Article : Google Scholar
|
11
|
Demyttenaere S, Feldman LS and Fried GM:
Effect of pneumoperitoneum on renal perfusion and function: A
systematic review. Surg Endosc. 21:152–160. 2007. View Article : Google Scholar
|
12
|
Ozmen MM, Zulfikaroglu B, Besler TH, Col
C, Cinel L and Cinel I: The correlation between reactive oxygen
species and histopathology of the liver, gut, and kidneys in
animals with elevated intra-abdominal pressure. J Laparoendosc Adv
Surg Tech A. 19:339–343. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sammour T, Mittal A, Loveday BP, Kahokehr
A, Phillips AR, Windsor JA and Hill AG: Systematic review of
oxidative stress associated with pneumoperitoneum. Br J Surg.
96:836–850. 2009. View
Article : Google Scholar : PubMed/NCBI
|
14
|
de Seigneux S, Klopfenstein CE, Iselin C
and Martin PY: The risk of acute kidney injury following
laparoscopic surgery in a chronic kidney disease patient. NDT Plus.
4:339–341. 2011.PubMed/NCBI
|
15
|
Li W, Cao Z, Xia Z, Meng Q, Yu WM, Yao X
and Cheng F: Acute kidney injury induced by various
pneumoperitoneum pressures in a rabbit model of mild and severe
hydronephrosis. Urol Int. 94:225–233. 2015. View Article : Google Scholar
|
16
|
Li W, Zhao S, Cheng F, Rao T, Yu W, Ruan
Y, Yuan R and Yao X: Oxidative damage and mitochondrial injuries
differ following pneumoperitoneum pressure in rabbit models of
varying degrees of hydronephrosis. Mol Med Rep. 17:6819–6827.
2018.PubMed/NCBI
|
17
|
Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW
and Chuang YC: Roles of oxidative stress, apoptosis, PGC-1alpha and
mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci.
12:7199–7215. 2011. View Article : Google Scholar :
|
18
|
National Research Council: Guide For The
Care and Use of Laboratory Animals. National Acadamies Press;
Washington, DC: 1996
|
19
|
Wen JG, Chen Y, F Frøkiaer J, Jørgensen TM
and Djurhuus JC: Experimental partial unilateral ureter
obstruction. I. Pressure flow relationship in a rat model with mild
and severe acute ureter obstruction. J Urol. 160:1567–1571. 1998.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ly JD, Grubb DR and Lawen A: The
mitochondrial membrane potential (deltapsi(m)) in apoptosis; an
update. Apoptosis. 8:115–128. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Perelman A, Wachtel C, Cohen M, Haupt S,
Shapiro H and Tzur A: JC-1: Alternative excitation wavelengths
facilitate mitochondrial membrane potential cytometry. Cell Death
Dis. 3:e4302012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhu X, Wang K, Zhang K, Huang B, Zhang J,
Zhang Y, Zhu L, Zhou B and Zhou F: Ziyuglycoside II inhibits the
growth of human breast carcinoma MDA-MB-435 cells via cell cycle
arrest and induction of apoptosis through the mitochondria
dependent pathway. Int J Mol Sci. 14:18041–18055. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen Q, Xu H, Xu A, Ross T, Bowler E, Hu Y
and Lesnefsky EJ: Inhibition of Bcl-2 sensitizes mitochondrial
permeability transition pore (MPTP) opening in ischemia-damaged
mitochondria. PLoS One. 10:e1188342015.
|
24
|
Eleftheriadis T, Pissas G, Liakopoulos V
and Stefanidis I: Cytochrome C as a potentially clinical useful
marker of mitochondrial and cellular damage. Front Immunol.
7:2792016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Feinstein-Rotkopf Y and Arama E: Can’t
live without them, can live with them: Roles of caspases during
vital cellular processes. Apoptosis. 14:980–995. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Khoury W, Jakowlev K, Fein A, Orenstein H,
Nakache R and Weinbroum AA: Renal apoptosis following carbon
dioxide pneumoperitoneum in a rat model. J Urol. 180:1554–1558.
2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wiesenthal JD, Fazio LM, Perks AE, Blew
BD, Mazer D, Hare G, Honey RJ and Pace KT: Effect of
pneumoperitoneum on renal tissue oxygenation and blood flow in a
rat model. Urology. 77:1508–1509. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Richards WO, Scovill W, Shin B and Reed W:
Acute renal failure associated with increased intra-abdominal
pressure. Ann Surg. 197:183–187. 1983. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bishara B, Ramadan R, Karram T, Awad H,
Abu-Saleh N, Winaver J, Assadi A and Abassi Z: Nitric oxide
synthase inhibition aggravates the adverse renal effects of high
but not low intraabdominal pressure. Surg Endosc. 24:826–833. 2010.
View Article : Google Scholar
|
30
|
Hashikura Y, Kawasaki S, Munakata Y,
Hashimoto S, Hayashi K and Makuuchi M: Effects of peritoneal
insufflation on hepatic and renal blood flow. Surg Endosc.
8:759–761. 1994. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sodha S, Nazarian S, Adshead JM, Vasdev N
and Mohan-S G: Effect of pneumoperitoneum on renal function and
physiology in patients undergoing robotic renal surgery. Curr Urol.
9:1–4. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nickkholgh A, Barro-Bejarano M, Liang R,
Zorn M, Mehrabi A, Gebhard MM, Büchler MW, Gutt CN and Schemmer P:
Signs of reperfusion injury following CO2
pneumoperitoneum: An in vivo microscopy study. Surg Endosc.
22:122–128. 2008. View Article : Google Scholar
|
33
|
Richter S, Olinger A, Hildebrandt U,
Menger MD and Vollmar B: Loss of physiologic hepatic blood flow
(‘hepatic arterial buffer response’) during CO2-pneumoperitoneum in
the rat. Anesth Analg. 93:872–877. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guven S, Muci E, Unsal MA, Yulug E, Alver
A, Kadioglu Duman M and Mentese A: The effects of carbon dioxide
pneumoperitoneum on ovarian blood flow, oxidative stress markers,
and morphology during laparoscopy: A rabbit model. Fertil Steril.
93:1327–1332. 2010. View Article : Google Scholar
|
35
|
Oksuz H, Bulbuloglu E, Senoglu N, Ciralik
H, Yuzbasioglu MF, Kilinc M, Dogan Z, Goksu M, Yildiz H, Ozkan OV
and Atli Y: Re-protective effects of pre- and post-laparoscopy
conditioning, zinc, pentoxifylline, and N-acetylcysteine in an
animal model of laparoscopy-induced ischemia/reperfusion injury of
the kidney. Ren Fail. 31:297–302. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gao Y, Chen T, Lei X, Li Y, Dai X, Cao Y,
Ding Q, Lei X, Li T and Lin X: Neuroprotective effects of polydatin
against mitochondrial-dependent apoptosis in the rat cerebral
cortex following ischemia/reperfusion injury. Mol Med Rep.
14:5481–5488. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chevalier RL, Thornhill BA, Forbes MS and
Kiley SC: Mechanisms of renal injury and progression of renal
disease in congenital obstructive nephropathy. Pediatr Nephrol.
25:687–697. 2010. View Article : Google Scholar
|
38
|
Shigeta K, Kikuchi E, Hagiwara M, Hattori
S, Kaneko G, Hasegawa M, Takeda T, Jinzaki M, Akita H, Miyajima A,
et al: Visceral to total obesity ratio and severe hydronephrosis
are independently associated with prolonged pneumoperitoneum
operative time in patients undergoing laparoscopic radical
nephroureterectomy for upper tract urothelial carcinoma.
Springerplus. 4:2902015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bauer V and Bauer F: Reactive oxygen
species as mediators of tissue protection and injury. Gen Physiol
Biophys Spec No. 7–14. 1999.
|
40
|
Maslov LN, Naryzhnaia NV, Podoksenov I,
Prokudina ES, Gorbunov AS, Zhang I and Pei Z: Reactive oxygen
species are triggers and mediators of an increase in cardiac
tolerance to impact of ischemia-reperfusion. Ross Fiziol Zh Im I M
Sechenova. 101:3–24. 2015.In Russian. PubMed/NCBI
|
41
|
Tajeddine N: How do reactive oxygen
species and calcium trigger mitochondrial membrane
permeabilisation. Biochim Biophys Acta. 1860.1079–1088. 2016.
|
42
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar
|
43
|
Zhang M, Zheng J, Nussinov R and Ma B:
Release of cytochrome C from bax pores at the mitochondrial
membrane. Sci Rep. 7:26352017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huttemann M, Pecina P, Rainbolt M,
Sanderson TH, Kagan VE, Samavati L, Doan JW and Lee I: The multiple
functions of cytochrome c and their regulation in life and death
decisions of the mammalian cell: From respiration to apoptosis.
Mitochondrion. 11:369–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Boujrad H, Gubkina O, Robert N, Krantic S
and Susin SA: AIF-mediated programmed necrosis: A highly regulated
way to die. Cell Cycle. 6:2612–2619. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Basanez G, Soane L and Hardwick JM: A new
view of the lethal apoptotic pore. PLoS Biol. 10:e10013992012.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kushnareva Y, Andreyev AY, Kuwana T and
Newmeyer DD: Bax activation initiates the assembly of a multimeric
catalyst that facilitates Bax pore formation in mitochondrial outer
membranes. PLoS Biol. 10:e10013942012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chipuk JE and Green DR: How do BCL-2
proteins induce mitochondrial outer membrane permeabilization?
Trends Cell Biol. 18:157–164. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Avital S, Itah R, Szomstein S, Rosenthal
R, Inbar R, Sckornik Y and Weinbroum A: Correlation of
CO2 pneumoperitoneal pressures between rodents and
humans. Surg Endosc. 23:50–54. 2009. View Article : Google Scholar
|
50
|
Balayssac D, Pereira B, Bazin JE, Le Roy
B, Pezet D and Gagniere J: Warmed and humidified carbon dioxide for
abdominal laparoscopic surgery: Meta-analysis of the current
literature. Surg Endosc. 31:1–12. 2017. View Article : Google Scholar
|
51
|
Davis SS, Mikami DJ, Newlin M, Needleman
BJ, Barrett MS, Fries R, Larson T, Dundon J, Goldblatt MI and
Melvin WS: Heating and humidifying of carbon dioxide during
pneumoperitoneum is not indicated: A prospective randomized trial.
Surg Endosc. 20:153–158. 2006. View Article : Google Scholar
|
52
|
Sammour T, Mittal A, Delahunt B, Phillips
AR and Hill AG: Warming and humidifcation have no effect on
oxidative stress during pneumoperitoneum in rats. Minim Invasive
Ther Allied Technol. 20:329–337. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Akbulut G, Polat C, Aktepe F, Yilmaz S,
Kahraman A, Serteser M, Gökçe C and Gökçe O: The oxidative effect
of prolonged CO2 pneumoperitoneum on renal tissue of
rats. Surg Endosc. 18:1384–1388. 2004. View Article : Google Scholar
|
54
|
Hoekstra LT, Ruys AT, Milstein DM, van
Samkar G, van Berge HM, Heger M, Verheij J and van Gulik TM:
Effects of prolonged pneumoperitoneum on hepatic perfusion during
laparoscopy. Ann Surg. 257:302–307. 2013. View Article : Google Scholar
|
55
|
Doerflinger M, Glab JA and Puthalakath H:
BH3-only proteins: A 20-year stock-take. FEBS J. 282:1006–1016.
2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Gerecova G, Kopanicova J, Jaka P, Běhalová
L, Juhásová B, Bhatia-Kiššová I, Forte M, Polčic P and Mentel M:
BH3-only proteins Noxa, Bik, Bmf, and Bid activate Bax and Bak
indirectly when studied in yeast model. Fems Yeast Res. 13:747–754.
2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Juhasova B, Mentel M, Bhatia-Kissova I,
Zeman I, Kolarov J, Forte M and Polčic P: BH3-only protein Bim
inhibits activity of antiapoptotic members of Bcl-2 family when
expressed in yeast. FEBS Lett. 585:2709–2713. 2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tegla CA, Cudrici C, Patel S, Trippe R,
Rus V, Niculescu F and Rus H: Membrane attack by complement: The
assembly and biology of terminal complement complexes. Immunol Res.
51:45–60. 2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Schuler M and Green DR: Mechanisms of
p53-dependent apoptosis. Biochem Soc Trans. 29:684–688. 2001.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhang J, Ye J, Altafaj A, Cardona M, Bahi
N, Llovera M, Cañas X, Cook SA, Comella JX and Sanchis D: EndoG
links Bnip3-induced mitochondrial damage and caspase-independent
DNA fragmentation in ischemic cardiomyocytes. PLoS One.
6:e179982011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Kilbride SM and Prehn JH: Central roles of
apoptotic proteins in mitochondrial function. Oncogene.
32:2703–2711. 2013. View Article : Google Scholar
|