Physiological function of myocilin and its role in the pathogenesis of glaucoma in the trabecular meshwork (Review)
- Authors:
- Hongwei Wang
- Mingzhe Li
- Zhenzhen Zhang
- Haifeng Xue
- Xing Chen
- Yong Ji
-
Affiliations: Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China, Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China, Public Health School, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China, Department of Science and Education, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China, Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China - Published online on: November 20, 2018 https://doi.org/10.3892/ijmm.2018.3992
- Pages: 671-681
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M, Igo RP Jr, Song YE, Wojciechowski R, Cheng CY, Khaw PT, et al: Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet. 50:778–782. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S and Wang Y: Mutual regulation of the Hippo/Wnt/LPA/TGF-β signaling pathways and their roles in glaucoma (Review). Int J Mol Med. 41:1201–1212. 2018. | |
Rangachari K, Bankoti N, Shyamala N, Michael D, Sameer Ahmed Z, Chandrasekaran P and Sekar K: Glaucoma Pred: Glaucoma prediction based on myocilin genotype and phenotype information. Genomics. S0888–S7543. 30087–30089. 2018.PubMed/NCBI | |
Narooie-Nejad M, Rasouli A, Mousavi M and Rohani MR: Study of MYOC gene mutation in POAG patients in zahedan iran. Clin Lab. 63:1283–1291. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rasnitsyn A, Doucette L, Seifi M, Footz T, Raymond V and Walter MA: FOXC1 modulates MYOC secretion through regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25. PLoS One. 12:e01785182017. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Bollinger KE, Kodeboyina SK, Zhi W, Patton J, Bai S, Edwards B, Ulrich L, Bogorad D and Sharma A: Proteomic alterations in aqueous humor from patients with primary open angle glaucoma. Invest Ophthalmol Vis Sci. 59:2635–2643. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hamanaka T, Kimura M, Sakurai T, Ishida N, Yasuda J, Nagasaki M, Nariai N, Endo A, Homma K, Katsuoka F, et al: A histologic categorization of aqueous outflow routes in familial open-angle glaucoma and associations with mutations in the MYOC gene in japanese patients. Invest Ophthalmol Vis Sci. 58:2818–2831. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fini ME: Another piece of the puzzle: MYOC and myocilin glaucoma. Invest Ophthalmol Vis Sci. 58:53192017. View Article : Google Scholar : PubMed/NCBI | |
Donegan RK and Lieberman RL: Discovery of molecular therapeutics for glaucoma: Challenges successes and promising directions. J Med Chem. 59:788–809. 2016. View Article : Google Scholar | |
Katoli P, Godbole A, Romanowski MJ, Clark K, Meredith E, Saenz-Vash V, Wang YK, Lewicki N, Nguyen AA and Lynch JM: Full-length myocilin protein is purified from mammalian cells as a dimer. Protein Expr Purif. 147:38–48. 2018. View Article : Google Scholar : PubMed/NCBI | |
Faralli JA, Clark RW, Filla MS and Peters DM: NFATc1 activity regulates the expression of myocilin induced by dexamethasone. Exp Eye Res. 130:9–16. 2015. View Article : Google Scholar | |
Qiu Y, Shen X, Shyam R, Yue BY and Ying H: Cellular processing of myocilin. PLoS One. 9:928452014. View Article : Google Scholar | |
Gupta V, Somarajan BI, Gupta S, Chaurasia AK, Kumar S, Dutta P, Gupta V, Sharma A, Tayo BO and Nischal K: The inheritance of juvenile onset primary open angle glaucoma. Clin Genet. 92:134–142. 2017. View Article : Google Scholar | |
Mauri L, Uebe S, Sticht H, Vossmerbaeumer U, Weisschuh N, Manfredini E, Maselli E, Patrosso M, Weinreb RN, Penco S, et al: Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma. Orphanet J Rare Dis. 11:1082016. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Xie L, Wu Z, Cao Y, Zheng Y, Pang CP and Zhang M: Detection of mutations in MYOC OPTN NTF4 WDR36 and CYP1B1 in Chinese juvenile onset open-angle glaucoma using exome sequencing. Sci Rep. 8:4498–4505. 2018. View Article : Google Scholar | |
Wiggs JL and Vollrath D: Molecular and clinical evaluation of a patient hemizygous for TIGR/MYOC. Arch Ophthalmol. 119:1674–1678. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gupta V, Ganesan VL, Kumar S, Chaurasia AK, Malhotra S and Gupta S: Visual disability among juvenile open-angle glaucoma patients. J Glaucoma. 27:e87-e892018. View Article : Google Scholar : PubMed/NCBI | |
Borrás T: The effects of myocilin expression on functionally relevant trabecular meshwork genes: A mini-review. J Ocul Pharmacol Ther. 30:202–212. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Vollrath D: Reversal of mutant myocilin non-secretion and cell killing: Implications for glaucoma. Hum Mol Genet. 13:1193–1204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hernandez H, Millar JC, Curry SM, Clark AF and McDowell CM: BMP and activin membrane bound inhibitor regulates the extracellular matrix in the trabecular meshwork. Invest Ophthalmol Vis Sci. 59:2154–2166. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, et al: CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA. 114:11199–11204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim JH and Caprioli J: Intraocular pressure fluctuation: Is it important. J Ophthalmic Vis Res. 13:170–174. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aroca-Aguilar JD, Sánchez-Sánchez F, Ghosh S, Coca-Prados M and Escribano J: Myocilin mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of myocilin between amino acids Arg226 and Ile227. J Biol Chem. 280:21043–21051. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Eaves S, Dhillon N and Ranjit P: Postoperative outcomes following trabeculectomy and nonpenetrating surgical procedures: A 5-year longitudinal study. Clin Ophthalmol. 12:995–1002. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Gao Y, Hill SE, Huard DJE, Tomlin MO, Lieberman RL, Paravastu AK and Hall CK: Simulations and experiments delineate amyloid fibrilization by peptides derived from glaucoma-associated myocilin. J Phys Chem B. 122:5845–5850. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hewitt AW, Mackey DA and Craig JE: Myocilin myocilin allele-specific glaucoma phenotype database. Hum Mutat. 29:207–211. 2008. View Article : Google Scholar | |
Stothert AR, Fontaine SN, Sabbagh JJ and Dickey CA: Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma. Exp Eye Res. 144:38–45. 2016. View Article : Google Scholar : | |
Yao YH, Wang YQ, Fang WF, Zhang L, Yang JH and Zhu YH: A recurrent G367R mutation in MYOC associated with juvenile open angle glaucoma in a large chinese family. Int J Ophthalmol. 11:369–374. 2018. | |
Souzeau E, Burdon KP, Ridge B, Dubowsky A, Ruddle JB and Craig JE: A novel de novo myocilin variant in a patient with sporadic juvenile open angle glaucoma. BMC Med Genet. 17:302016. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Li Y, Lan L, Li B, Lin L, Lu X and Li J: Ser341 Pro MYOC gene mutation in a family with primary open-angle glaucoma. Int J Mol Med. 35:1230–1236. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Shi Y, Huang X, Li X, Ye Z, Shuai P, Qu C, Chen R, Xu J, Yang Z, et al: Identification of a novel MYOC mutation in a Chinese family with primary open-angle glaucoma. Gene. 571:188–193. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zadoo S, Nguyen A, Zode G and Hulleman JD: A novel luciferase assay for sensitively monitoring myocilin variants in cell culture. Invest Ophthalmol Vis Sci. 57:1939–1950. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aroca-Aguilar JD, Martínez-Redondo F, Sánchez-Sánchez F, Coca-Prados M and Escribano J: Functional role of proteolytic processing of recombinant myocilin in self-aggregation. Invest Ophthalmol Vis Sci. 51:72–78. 2010. View Article : Google Scholar : | |
Aroca-Aguilar JD, Sánchez-Sánchez F, Ghosh S, Fernández-Navarro A, Coca-Prados M and Escribano J: Interaction of recombinant myocilin with the matricellular protein SPARC: Functional implications. Invest Ophthalmol Vis Sci. 52:179–189. 2011. View Article : Google Scholar : | |
Resch ZT and Fautsch MP: Glaucoma-associated myocilin: A better understanding but much more to learn. Exp Eye Res. 88:704–712. 2009. View Article : Google Scholar : | |
Caballero M, Rowlette LL and Borras T: Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. Biochim Biophys Acta. 1502:447–460. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gobeil S, Letartre L and Raymond V: Functional analysis of the glaucoma-causing TIGR/myocilin protein: Integrity of amino-terminal coiled-coil regions and olfactomedin homology domain is essential for extracellular adhesion and secretion. Exp Eye Res. 82:1017–1029. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Souzeau E, Sharma S, Landers J, Mills R, Goldberg I, Healey PR, Graham S, Hewitt AW, Mackey DA, et al: Whole exome sequencing implicates eye development the unfolded protein response and plasma membrane homeostasis in primary open-angle glaucoma. PLoS One. 12:e01724272017. View Article : Google Scholar | |
Goldwich A, Ethier CR, Chan DW and Tamm ER: Perfusion with the olfactomedin domain of myocilin does not affect outflow facility. Invest Ophthalmol Vis Sci. 44:1953–1961. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Sánchez F, Martínez-Redondo F, Aroca-Aguilar JD, Coca-Prados M and Escribano J: Characterization of the intracellular proteolytic cleavage of myocilin and identification of calpain II as a myocilin-processing protease. J Biol Chem. 282:27810–27824. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jacobson N, Andrews M, Shepard AR, Nishimura D, Searby C, Fingert JH, Hageman G, Mullins R, Davidson BL, Kwon YH, et al: Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet. 10:117–125. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aroca-Aguilar JD, Sánchez-Sánchez F, Martínez-Redondo F, Coca-Prados M and Escribano J: Heterozygous expression of myocilin glaucoma mutants increases secretion of the mutant forms and reduces extracellular processed myocilin. Mol Vis. 14:2097–2108. 2008.PubMed/NCBI | |
Hood JL, Brooks WH and Roszman TL: Differential compart-mentalization of the calpain/calpastatin network with the endoplasmic reticulum and Golgi apparatus. J Biol Chem. 279:43126–43135. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wei YT, Li YQ, Bai YJ, Wang M, Chen JH, Ge J and Zhuo YH: Pro370Leu myocilin mutation in a chinese pedigree with juvenile-onset open angle glaucoma. Mol Vis. 17:1449–1456. 2011.PubMed/NCBI | |
Ueda J, Wentz-Hunter K and Yue BY: Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sci. 43:1068–1076. 2002.PubMed/NCBI | |
Li Y, Aroca-Aguilar JD, Ghosh S, Sánchez-Sánchez F, Escribano J and Coca-Prados M: Interaction of myocilin with the C-terminal region of hevin. Biochem Biophys Res Commun. 339:797–804. 2006. View Article : Google Scholar | |
Torrado M, Trivedi R, Zinovieva R, Karavanova I and Tomarev SI: Optimedin: A novel olfactomedin-related protein that interacts with myocilin. Hum Mol Genet. 11:1291–1301. 2002. View Article : Google Scholar : PubMed/NCBI | |
Filla MS, Liu X, Nguyen TD, Polansky JR, Brandt CR, Kaufman PL and Peters DM: In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibro-nectin. Invest Ophthalmol Vis Sci. 43:151–161. 2002.PubMed/NCBI | |
Fautsch MP, Vrabel AM and Johnson DH: The identification of myocilin-associated proteins in the human trabecular meshwork. Exp Eye Res. 82:1046–1052. 2006. View Article : Google Scholar | |
Joe MK, Lieberman RL, Nakaya N and Tomarev SI: Myocilin regulates metalloprotease 2 activity through interaction with TIMP3. Invest Ophthalmol Vis Sci. 58:5308–5318. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patel GC, Phan TN, Maddineni P, Kasetti RB, Millar JC, Clark AF and Zode GS: Dexamethasone-induced ocular hypertension in mice: Effects of myocilin and route of administration. Am J Pathol. 187:713–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li G, Cui G, Dismuke WM, Navarro I, Perkumas K, Woodward DF and Stamer WD: Differential response and withdrawal profile of glucocorticoid-treated human trabecular meshwork cells. Exp Eye Res. 155:38–46. 2017. View Article : Google Scholar : | |
Webber HC, Bermudez JY, Sethi A, Clark AF and Mao W: Crosstalk between TGFβ and Wnt signaling pathways in the human trabecular meshwork. Exp Eye Res. 148:97–102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Raghunathan VK, Morgan JT, Park SA, Weber D, Phinney BS, Murphy CJ and Russell P: Dexamethasone stiffens trabecular meshwork trabecular meshwork cells and matrix. Invest Ophthalmol Vis Sci. 56:4447–4459. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TD, Chen P, Huang WD, Chen H, Johnson D and Polansky JR: Gene structure and properties of myocilin an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem. 273:6341–6350. 1998. View Article : Google Scholar : PubMed/NCBI | |
Agrahari V, Li G, Agrahari V, Navarro I, Perkumas K, Mandal A, Stamer WD and Mitra AK: Pentablock copolymer dexamethasone nanoformulations elevate MYOC: In vitro liberation, activity and safety in human trabecular meshwork cells. Nanomedicine (Lond). 12:1911–1926. 2017. View Article : Google Scholar | |
Prat C, Belville C, Comptour A, Marceau G, Clairefond G, Chiambaretta F, Sapin V and Blanchon L: Myocilin expression is regulated by retinoic acid in the trabecular meshwork-derived cellular environment. Exp Eye Res. 155:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Chen W, Guo M, He Q and Hu Y: Effects of transforming growth factor-β2 on myocilin expression and secretion in human primary cultured trabecular meshwork cells. Int J Clin Exp Pathol. 7:4827–4836. 2014. | |
Huang X, Li M, Guo X, Li S, Xiao X, Jia X, Liu X and Zhang Q: Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma. Invest Ophthalmol Vis Sci. 55:3594–3602. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park J, Kim M, Park CK, Chae H, Lee S, Kim Y, Jang W, Chi HY, Park HY and Park SH: Molecular analysis of myocilin and optineurin genes in Korean primary glaucoma patients. Mol Med Rep. 14:2439–2448. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maurya N, Agarwal NR and Ghosh I: Low-dose rotenone exposure induces early senescence leading to late apoptotic signaling cascade in human trabecular meshwork (HTM) cell line: An in vitro glaucoma model. Cell Biol Int. 40:107–120. 2016. View Article : Google Scholar | |
Pattabiraman PP and Rao PV: Hic-5 regulates actin cytoskeletal reorganization and expression of fibrogenic markers and myocilin in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 56:5656–5669. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Cho KS, Thee EF, Jager MJ and Chen DF: Neuroimmflammation and microglia in glaucoma: Time for a paradigm shift. J Neurosci Res. 2018.Epub ahead of print. | |
Wareham LK, Buys ES and Sappington RM: The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide. 77:75–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Michelessi M, Bicket AK and Lindsley K: Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst Rev. 4:CD0093132018.PubMed/NCBI | |
Stamer WD and Acott TS: Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 23:135–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim BS, Savinova OV, Reedy MV, Martin J, Lun Y, Gan L, Smith RS, Tomarev SI, John SW and Johnson RL: Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol. 21:7707–7713. 2001. View Article : Google Scholar : PubMed/NCBI | |
Acott TS, Kelley MJ, Keller KE, Vranka JA, Abu-Hassan DW, Li X, Aga M and Bradley JM: Intraocular pressure homeostasis: Maintaining balance in a high-pressure environment. J Ocul Pharmacol Ther. 30:94–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fautsch MP, Bahler CK, Jewison DJ and Johnson DH: Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment. Invest Ophthalmol Vis Sci. 41:4163–4168. 2000.PubMed/NCBI | |
Patel GC, Liu Y, Millar JC and Clark AF: Glucocorticoid receptor GRβ regulates glucocorticoid-induced ocular hypertension in mice. Sci Rep. 8:8622018. View Article : Google Scholar | |
Faralli JA, Dimeo KD, Trane RM and Peters D: Absence of a secondary glucocorticoid response in C57BL/6J mice treated with topical dexamethasone. PLoS One. 13:e01926652018. View Article : Google Scholar : PubMed/NCBI | |
Nazir S, Mukhtar M, Shahnawaz M, Farooqi S, Fatima N, Mehmood R and Sheikh N: A novel single nucleotide polymorphism in exon 3 of MYOC enhances the risk of glaucoma. PLoS One. 13:e01951572018. View Article : Google Scholar : PubMed/NCBI | |
Shepard AR, Jacobson N, Millar JC, Pang IH, Steely HT, Searby CC, Sheffield VC, Stone EM and Clark AF: Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor (PTS1R) to elevate intraocular pressure. Hum Mol Genet. 16:609–617. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guan Y, Li J, Zhan T, Wang JW, Yu JB and Yang L: Idebenone maintains survival of mutant myocilin cells by inhibiting apoptosis. Chin Med J (Engl). 129:2001–2004. 2016. View Article : Google Scholar | |
Nag A, Lu H, Arno M, Iglesias AI, Bonnemaijer P, Broer L, Uitterlinden AG, Klaver CC, van Duijn C, Hysi PG and Hammond CJ: Evaluation of the myocilin mutation gln368stop demonstrates reduced penetrance for glaucoma in european populations. Ophthalmology. 124:547–553. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lam DS, Leung YF, Chua JK, Baum L, Fan DS, Choy KW and Pang CP: Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 41:1386–1391. 2000.PubMed/NCBI | |
Morissette J, Clépet C, Moisan S, Dubois S, Winstall E, Vermeeren D, Nguyen TD, Polansky JR, Côté G, Anctil JL, et al: Homozygotes carrying an autosomal dominant TIGR mutation do not manifest glaucoma. Nat Genet. 19:319–321. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kuchtey J, Chowdhury UR, Uptegraft CC, Fautsch MP and Kuchtey RW: A de novo MYOC mutation detected in juvenile open angle glaucoma causes non-secretion of associated with reduced myocilin protein in aqueous humor. Eur J Med Genet. 56:292–296. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huard DJE, Crowley VM, Du Y, Cordova RA, Sun Z, Tomlin MO, Dickey CA, Koren J III, Blair L, Fu H, et al: Trifunctional high-throughput screen identifies promising scaffold to inhibit Grp94 and treat myocilin-associated glaucoma. ACS Chem Biol. 13:933–941. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stothert AR, Suntharalingam A, Huard DJ, Fontaine SN, Crowley VM, Mishra S, Blagg BS, Lieberman RL and Dickey CA: Exploiting the interaction between Grp94 and aggregated myocilin to treat glaucoma. Hum Mol Genet. 23:6470–6480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Caballero M and Borras T: Inefficient processing of an olfactomedindeficient myocilin mutant: Potential physiological relevance to glaucoma. Biochem Biophys Res Commun. 282:662–670. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vollrath D and Liu Y: Temperature sensitive secretion of mutant myocilins. Exp Eye Res. 82:1030–1036. 2006. View Article : Google Scholar | |
Yam GH, Gaplovska-Kysela K, Zuber C and Roth J: Aggregated myocilin induces russell bodies and causes apoptosis: Implications for the pathogenesis of myocilin-caused primary open-angle glaucoma. Am J Pathol. 170:100–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Joe MK, Sohn S, Hur W, Moon Y, Choi YR and Kee C: Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem Biophys Res Commun. 312:592–600. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gould DB, Miceli-Libby L, Savinova OV, Torrado M, Tomarev SI, Smith RS and John SW: Genetically increasing Myoc expression supports a necessary pathologic role of abnormal proteins in glaucoma. Mol Cell Biol. 24:9019–9025. 2004. View Article : Google Scholar : PubMed/NCBI | |
Joe MK, Nakaya N, Abu-Asab M and Tomarev SI: Mutated myocilin and heterozygous Sod2 deficiency act synergistically in a mouse model of open-angle glaucoma. Hum Mol Genet. 24:3322–3334. 2015. View Article : Google Scholar : PubMed/NCBI | |
Joe MK and Tomarev SI: Expression of myocilin mutants sensitizes cells to oxidative stress-induced apoptosis: Implication for glaucoma pathogenesis. Am J Pathol. 176:2880–2890. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hill SE and Donegan RK: The glaucoma-associated olfactomedin domain of myocilin forms polymorphic fibrils that are constrained by partial unfolding and peptide sequence. J Mol Biol. 426:921–935. 2014. View Article : Google Scholar : | |
Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K, Grozdanic SD, Bugge K, Anderson MG, Clark AF, Stone EM and Sheffield VC: Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest. 121:3542–3553. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maddineni P, Kasetti RB and Zode GS: Methods for analyzing endoplasmic reticulum stress in the trabecular meshwork of glaucoma models. Methods Mol Biol. 1695:121–134. 2018. View Article : Google Scholar | |
Chong WC, Shastri MD and Eri R: Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. Int J Mol Sci. 18:E7712017. View Article : Google Scholar : PubMed/NCBI | |
Plaisance V, Brajkovic S, Tenenbaum M, Favre D, Ezanno H, Bonnefond A, Bonner C, Gmyr V, Kerr-Conte J, Gauthier BR, et al: Endoplasmic reticulum stress links oxidative stress to impaired pancreatic beta-cell function caused by human oxidized LDL. PLoS One. 11:e01630462016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wang S, Zhong W, Yang B, Sun L and Zheng Y: Oxidative stress in the trabecular meshwork (Review). Int J Mol Med. 38:995–1002. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grootjans J, Kaser A, Kaufman RJ and Blumberg RS: The unfolded protein response in immunity and inflammation. Nat Rev Immunol. 16:469–484. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo K and Cao SS: Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract. 2015:3287912015. View Article : Google Scholar : PubMed/NCBI | |
Peters JC, Bhattacharya S, Clark AF and Zode GS: Increased endoplasmic reticulum stress in human glaucomatous trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 56:3860–3868. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huard DJ and Lieberman RL: Progress toward development of a proteostasis drug for myocilin-associated glaucoma. Future Med Chem. 10:1391–1393. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mishra SJ, Ghosh S, Stothert AR, Dickey CA and Blagg BS: Transformation of the non-selective aminocyclohexanol-based Hsp90 inhibitor into a Grp94-seletive scaffold. ACS Chem Biol. 12:244–253. 2017. View Article : Google Scholar : | |
Crowley VM, Khandelwal A, Mishra S, Stothert AR, Huard DJ, Zhao J, Muth A, Duerfeldt AS, Kizziah JL, Lieberman RL, et al: Development of glucose regulated protein 94-selective inhibitors based on the BnIm and radamide scaffold. J Med Chem. 59:3471–3488. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stothert AR, Suntharalingam A, Tang X, Crowley VM, Mishra SJ, Webster JM, Nordhues BA, Huard DJE, Passaglia CL, Lieberman RL, et al: Isoform-selective Hsp90 inhibition rescues model of hereditary open-angle glaucoma. Sci Rep. 7:179512017. View Article : Google Scholar : PubMed/NCBI | |
Keller KE and Wirtz MK: Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res. 158:154–160. 2017. View Article : Google Scholar | |
Wang N, Chintala SK, Fini ME and Schuman JS: Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med. 7:304–309. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yerramothu P, Vijay AK and Willcox MDP: Inflammasomes the eye and anti-inflammasome therapy. Eye (Lond). 32:491–505. 2018. View Article : Google Scholar | |
Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML and Kracht M: RNAi-based identification of gene-specific nuclear cofactor networks regulating interleukin-1 target genes. Front Immunol. 9:7752018. View Article : Google Scholar : PubMed/NCBI | |
Yasuda M, Takayama K, Kanda T, Taguchi M, Someya H and Takeuchi M: Comparison of intraocular pressure-lowering effects of ripasudil hydrochloride hydrate for inflammatory and corticosteroid-induced ocular hypertension. PLoS One. 12:e01853052017. View Article : Google Scholar : PubMed/NCBI | |
Itakura T, Peters DM and Fini ME: Glaucomatous MYOC mutations activate the IL-1/NF-κB inflammatory stress response and the glaucoma marker SELE in trabecular meshwork cells. Mol Vis. 21:1071–1084. 2015. | |
Kasetti RB, Phan TN, Millar JC and Zode GS: Expression of mutant myocilin induces abnormal intracellular accumulation of selected extracellular matrix proteins in the trabecular meshwork. Invest Ophthalmol Vis Sci. 57:6058–6069. 2016. View Article : Google Scholar : PubMed/NCBI | |
Donegan RK, Hill SE, Freeman DM, Nguyen E, Orwig SD, Turnage KC and Lieberman RL: Structural basis for misfolding in myocilin-associated glaucoma. Hum Mol Genet. 24:2111–2124. 2015. View Article : Google Scholar : | |
Joe MK, Sohn S, Choi YR, Park H and Kee C: Identification of flotillin-1 as a protein interacting with myocilin: Implications for the pathogenesis of primary open-angle glaucoma. Biochem Biophys Res Commun. 336:1201–1206. 2005. View Article : Google Scholar : PubMed/NCBI | |
Joe MK, Kwon HS, Cojocaru R and Tomarev SI: Myocilin regulates cell proliferation and survival. J Biol Chem. 289:10155–10167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kessenbrock K, Wang CY and Werb Z: Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 46:184–190. 2015. View Article : Google Scholar | |
De Groef L, Van Hove I, Dekeyster E, Stalmans I and Moons L: MMPs in the neuroretina and optic nerve: Modulators of glaucoma pathogenesis and repair. Invest Ophthalmol Vis Sci. 55:1953–1964. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ashworth Briggs EL, Toh T, Eri R, Hewitt AW and Cook AL: TIMP1 TIMP2 and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Mol Vis. 21:1162–1172. 2015. | |
Filla MS, Dimeo KD, Tong T and Peters DM: Disruption of fibronectin matrix affects type IV collagen fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells. Exp Eye Res. 165:7–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, Clark AF and Sheffield VC: Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest. 124:1956–1965. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ho H, Htoon HM, Yam GH, Toh LZ, Lwin NC, Chu S, Lee YS, Wong TT and Seet LF: Altered anterior segment biometric parameters in mice deficient in SPARC. Invest Ophthalmol Vis Sci. 58:386–393. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hill SE, Nguyen E, Donegan RK, Patterson-Orazem AC, Hazel A, Gumbart JC and Lieberman RL: Structure and misfolding of the flexible tripartite coiled-coil domain of glaucoma-associated myocilin. Structure. 25:1697–1707. 2017. View Article : Google Scholar : PubMed/NCBI | |
Burns JN, Turnage KC, Walker CA and Lieberman RL: The stability of myocilin olfactomedin domain variants provides new insight into glaucoma as a protein misfolding disorder. Biochemistry. 50:5824–5833. 2011. View Article : Google Scholar : PubMed/NCBI | |
Burns JN, Orwig SD, Harris JL, Watkins JD, Vollrath D and Lieberman RL: Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones. ACS Chem Biol. 5:477–487. 2010. View Article : Google Scholar : PubMed/NCBI | |
Honda R: Role of the disulfide bond in prion protein amyloid formation: A thermodynamic and kinetic analysis. Biophys J. 114:885–892. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fingert JH, Héon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, et al: Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 8:899–905. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shimizu S, Lichter PR, Johnson AT, Zhou Z, Higashi M, Gottfredsdottir M, Othman M, Moroi SE, Rozsa FW, Schertzer RM, et al: Age-dependent prevalence of mutations at the GLC1A locus in primary open-angle glaucoma. Am J Ophthalmol. 130:165–177. 2000. View Article : Google Scholar : PubMed/NCBI | |
Millá E, Mañé B, Duch S, Hernan I, Borràs E, Planas E, Dias Mde S, Carballo M and Gamundi MJ; Spanish Multicenter Glaucoma Group-Estudio Multicéntrico Español de Investigación Genética del Glaucoma, EMEIGG: Survey of familial glaucoma shows a high incidence of cytochrome P450 family 1 subfamily B polypeptide 1 (CYP1B1) mutations in non-consanguineous congenital forms in a Spanish population. Mol Vis. 19:1707–1722. 2013. |