An integrative theory for cancer (Review)
- Authors:
- Guopei Luo
- Na Liu
-
Affiliations: Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China, Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China - Published online on: November 28, 2018 https://doi.org/10.3892/ijmm.2018.4004
- Pages: 647-656
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vineis P and Wild CP: Global cancer patterns: Causes and prevention. Lancet. 383:549–557. 2014. View Article : Google Scholar | |
Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman D and Bray F: Global burden of cancer in 2008: A systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 380:1840–1850. 2012. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On respiratory impairment in cancer cells. Science. 124:269–270. 1956.PubMed/NCBI | |
Jin S, DiPaola RS, Mathew R and White E: Metabolic catastrophe as a means to cancer cell death. J Cell Sci. 120:379–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis. Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koppenol WH, Bounds PL and Dang CV: Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG and DeBerardinis RJ: Understanding the Intersections between Metabolism and Cancer Biology. Cell. 168:657–669. 2017. View Article : Google Scholar : PubMed/NCBI | |
Casás-Selves M and Degregori J: How cancer shapes evolution, and how evolution shapes cancer. Evolution (NY). 4:624–634. 2011. | |
Bishop JM: Molecular themes in oncogenesis. Cell. 64:235–248. 1991. View Article : Google Scholar : PubMed/NCBI | |
Spandidos DA and Wilkie NM: Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature. 310:469–475. 1984. View Article : Google Scholar : PubMed/NCBI | |
Spandidos DA: A unified theory for the development of cancer. Biosci Rep. 6:691–708. 1986. View Article : Google Scholar : PubMed/NCBI | |
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 149:656–670. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, et al: Glycolysis-mediated changes in acetyl-CoA and histone acety-lation control the early differentiation of embryonic stem cells. Cell Metab. 21:392–402. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hammarström S: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 9:67–81. 1999. View Article : Google Scholar : PubMed/NCBI | |
Richardson LC and Pollack LA: Therapy insight: Influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pract Oncol. 2:48–53. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA and Thompson CB: The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24:2784–2799. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wellen KE and Thompson CB: Cellular metabolic stress: Considering how cells respond to nutrient excess. Mol Cell. 40:323–332. 2010. View Article : Google Scholar : PubMed/NCBI | |
Joslin EP, Lombard HL, Burrows RE and Manning MD: Diabetes and cancer. N Engl J Med. 260:486–488. 1959. View Article : Google Scholar : PubMed/NCBI | |
Pearson-Stuttard J, Zhou B, Kontis V, Bentham J, Gunter MJ and Ezzati M: Worldwide burden of cancer attributable to diabetes and high body-mass index: A comparative risk assessment. Lancet Diabetes Endocrinol. 6:95–104. 2018. View Article : Google Scholar : | |
Yuan C, Rubinson DA, Qian ZR, Wu C, Kraft P, Bao Y, Ogino S, Ng K, Clancy TE, Swanson RS, et al: Survival among patients with pancreatic cancer and long-standing or recent-onset diabetes mellitus. J Clin Oncol. 33:29–35. 2015. View Article : Google Scholar : | |
Niccoli T and Partridge L: Ageing as a risk factor for disease. Curr Biol. 22:R741–R752. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar | |
Hinkal G, Parikh N and Donehower LA: Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS One. 4:e66542009. View Article : Google Scholar : PubMed/NCBI | |
DePinho RA: The age of cancer. Nature. 408:248–254. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stanta G, Campagner L, Cavallieri F and Giarelli L: Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med. 13:55–68. 1997. View Article : Google Scholar : PubMed/NCBI | |
Dollé ME, Snyder WK, Gossen JA, Lohman PH and Vijg J: Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc Natl Acad Sci USA. 97:8403–8408. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dollé ME, Giese H, Hopkins CL, Martus HJ, Hausdorff JM and Vijg J: Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet. 17:431–434. 1997. View Article : Google Scholar : PubMed/NCBI | |
Miller RA: The aging immune system: Primer and prospectus. Science. 273:70–74. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bright R: Cases and observations connected with disease of thepancreas and duodenum. Med Chir Trans. 1833.18:1Y56 View Article : Google Scholar | |
Everhart J and Wright D: Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA. 273:1605–1609. 1995. View Article : Google Scholar : PubMed/NCBI | |
Larsson SC, Orsini N and Wolk A: Diabetes mellitus and risk of colorectal cancer: A meta-analysis. J Natl Cancer Inst. 97:1679–1687. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bragg F, Holmes MV, Iona A, Guo Y, Du H, Chen Y, Bian Z, Yang L, Herrington W, Bennett D, et al: China Kadoorie Biobank Collaborative Group: Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA. 317:280–289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Toriola AT, Stolzenberg-Solomon R, Dalidowitz L, Linehan D and Colditz G: Diabetes and pancreatic cancer survival: A prospective cohort-based study. Br J Cancer. 111:181–185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kleeff J, Costello E, Jackson R, Halloran C, Greenhalf W, Ghaneh P, Lamb RF, Lerch MM, Mayerle J, Palmer D, et al: The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer. Br J Cancer. 115:887–894. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, Wolff AC and Brancati FL: Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: A systematic review and meta-analysis. JAMA. 300:2754–2764. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cui Y and Andersen DK: Diabetes and pancreatic cancer. Endocr Relat Cancer. 19:F9–F26. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pollak M: Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 8:915–928. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sah RP, Nagpal SJ, Mukhopadhyay D and Chari ST: New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 10:423–433. 2013. View Article : Google Scholar : PubMed/NCBI | |
Slawson C, Copeland RJ and Hart GW: O-GlcNAc signaling: A metabolic link between diabetes and cancer. Trends Biochem Sci. 35:547–555. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM and Chari ST: Prevalence and clinical profile of pancreatic cancer- associated diabetes mellitus. Gastroenterology. 134:981–987. 2008. View Article : Google Scholar | |
Pannala R, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, Petersen GM and Chari ST: Temporal association of changes in fasting blood glucose and body mass index with diagnosis of pancreatic cancer. Am J Gastroenterol. 104:2318–2325. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pannala R, Basu A, Petersen GM and Chari ST: New-onset diabetes: A potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 10:88–95. 2009. View Article : Google Scholar | |
Luo G, Liu C, Guo M, Cheng H, Lu Y, Jin K, Liu L, Long J, Xu J, Lu R, et al: Potential biomarkers in Lewis negative patients with pancreatic cancer. Ann Surg. 265:800–805. 2017. View Article : Google Scholar | |
Luo G, Liu C, Guo M, Long J, Liu Z, Xiao Z, Jin K, Cheng H, Lu Y, Ni Q, et al: CA199-Low&Lewis(+) pancreatic cancer: A unique subtype. Cancer Lett. 385:46–50. 2017. View Article : Google Scholar | |
Esteghamati A, Hafezi-Nejad N, Zandieh A, Sheikhbahaei S, Emamzadeh-Fard S and Nakhjavani M: CA 19-9 is associated with poor glycemic control in diabetic patients: Role of insulin resistance. Clin Lab. 60:441–447. 2014. View Article : Google Scholar | |
Kim SH, Baek CO, Lee KA, Park TS, Baek HS and Jin HY: Clinical implication of elevated CA 19-9 level and the relationship with glucose control state in patients with type 2 diabetes. Endocrine. 46:249–255. 2014. View Article : Google Scholar | |
McWilliams RR and Petersen GM: Overweight, obesity, and pancreatic cancer: Beyond risk alone. JAMA. 301:2592–2593. 2009. View Article : Google Scholar | |
Bianchini F, Kaaks R and Vainio H: Overweight, obesity, and cancer risk. Lancet Oncol. 3:565–574. 2002. View Article : Google Scholar : PubMed/NCBI | |
Calle EE and Kaaks R: Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 4:579–591. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Bao Y, Wu C, Kraft P, Ogino S, Ng K, Qian ZR, Rubinson DA, Stampfer MJ, Giovannucci EL, et al: Prediagnostic body mass index and pancreatic cancer survival. J Clin Oncol. 31:4229–4234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Calle EE, Rodriguez C, Walker-Thurmond K and Thun MJ: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 348:1625–1638. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA and Manson JE: Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 351:2694–2703. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gukovsky I, Li N, Todoric J, Gukovskaya A and Karin M: Inflammation, autophagy, and obesity: Common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 144:1199–1209. e11942013. View Article : Google Scholar : PubMed/NCBI | |
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 140:197–208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weindruch R and Walford RL: Dietary restriction in mice beginning at 1 year of age: Effect on life-span and spontaneous cancer incidence. Science. 215:1415–1418. 1982. View Article : Google Scholar : PubMed/NCBI | |
Dhahbi JM, Kim HJ, Mote PL, Beaver RJ and Spindler SR: Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA. 101:5524–5529. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kalaany NY and Sabatini DM: Tumours with PI3K activation are resistant to dietary restriction. Nature. 458:725–731. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, Hwang D, Cohen P, Bianchi G and Longo VD: Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 70:1564–1572. 2010. View Article : Google Scholar : PubMed/NCBI | |
Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G and Longo VD: Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci USA. 105:8215–8220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sheen JH, Zoncu R, Kim D and Sabatini DM: Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell. 19:613–628. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E and Vousden KH: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 493:542–546. 2013. View Article : Google Scholar | |
Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, Turgeon MO, Fish L, Erard N, Gable AL, et al: Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 554:378–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gladden LB: Lactate metabolism: A new paradigm for the third millennium. J Physiol. 558:5–30. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feron O: Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 92:329–333. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, et al: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 118:3930–3942. 2008.PubMed/NCBI | |
Martinez-Outschoorn UE, Lisanti MP and Sotgia F: Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 25:47–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goodwin ML, Jin H, Straessler K, Smith-Fry K, Zhu JF, Monument MJ, Grossmann A, Randall RL, Capecchi MR and Jones KB: Modeling alveolar soft part sarcomagenesis in the mouse: A role for lactate in the tumor microenvironment. Cancer Cell. 26:851–862. 2014. View Article : Google Scholar : PubMed/NCBI | |
Doherty JR and Cleveland JL: Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 123:3685–3692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T and Inoue N: Tumor-secreted lactic acid promotes IL-23/ IL-17 proinflammatory pathway. J Immunol. 180:7175–7183. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ryan DP, Hong TS and Bardeesy N: Pancreatic adenocarcinoma. N Engl J Med. 371:1039–1049. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zong WX and Thompson CB: Necrotic death as a cell fate. Genes Dev. 20:1–15. 2006. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow. Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vakkila J and Lotze MT: Inflammation and necrosis promote tumour growth. Nat Rev Immunol. 4:641–648. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vanharanta S and Massagué J: Origins of metastatic traits. Cancer Cell. 24:410–421. 2013. View Article : Google Scholar | |
Oskarsson T, Batlle E and Massagué J: Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell. 14:306–321. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar | |
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, et al: Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 17:302–317. 2017. View Article : Google Scholar | |
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O’Connor ST, Li S, Chin AR, et al: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 17:183–194. 2015. View Article : Google Scholar : | |
Pascual G, Domínguez D and Benitah SA: The contributions of cancer cell metabolism to metastasis. Dis Model Mech. 11:112018. View Article : Google Scholar | |
Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, Omeroglu A, Gao D, Leung S, Amir E, et al: PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 22:577–589. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baracos VE, Martin L, Korc M, Guttridge DC and Fearon KC: Cancer-associated cachexia. Nat Rev Dis Primers. 4:171052018. View Article : Google Scholar | |
Argilés JM, Busquets S, Stemmler B and López-Soriano FJ: Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fearon KC, Glass DJ and Guttridge DC: Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 16:153–166. 2012. View Article : Google Scholar | |
McMillan DC: Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care. 12:223–226. 2009. View Article : Google Scholar | |
Hotchkiss RS, Strasser A, McDunn JE and Swanson PE: Cell death. N Engl J Med. 361:1570–1583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Danial NN and Korsmeyer SJ: Cell death: Critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Igney FH and Krammer PH: Death and anti-death: Tumour resistance to apoptosis. Nat Rev Cancer. 2:277–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G and Jäättelä M: Lysosomes and autophagy in cell death control. Nat Rev Cancer. 5:886–897. 2005. View Article : Google Scholar | |
White E, Mehnert JM and Chan CS: Autophagy, Metabolism, and Cancer. Clin Cancer Res. 21:5037–5046. 2015. View Article : Google Scholar : PubMed/NCBI | |
McQuade Li J, Siemer T, Napetschnig AB, Moriwaki J, Hsiao K, Damko YS, Moquin E, Walz D, McDermott TA, et al: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 150:339–350. 2012. View Article : Google Scholar : PubMed/NCBI | |
Majno G and Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 146:3–15. 1995.PubMed/NCBI | |
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI | |
Edwards JG, Swinson DE, Jones JL, Muller S, Waller DA and O’Byrne KJ: Tumor necrosis correlates with angiogenesis and is a predictor of poor prognosis in malignant mesothelioma. Chest. 124:1916–1923. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee SE, Byun SS, Oh JK, Lee SC, Chang IH, Choe G and Hong SK: Significance of macroscopic tumor necrosis as a prognostic indicator for renal cell carcinoma. J Urol. 176:1332–1337; discussion 1337-1338. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tomes L, Emberley E, Niu Y, Troup S, Pastorek J, Strange K, Harris A and Watson PH: Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Res Treat. 81:61–69. 2003. View Article : Google Scholar : PubMed/NCBI | |
Richards CH, Mohammed Z, Qayyum T, Horgan PG and McMillan DC: The prognostic value of histological tumor necrosis in solid organ malignant disease: A systematic review. Future Oncol. 7:1223–1235. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lotze MT and Tracey KJ: High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat Rev Immunol. 5:331–342. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kaczmarek A, Vandenabeele P and Krysko DV: Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 38:209–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S and Weinberg RA: Tumor metastasis: Molecular insights and evolving paradigms. Cell. 147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI | |
Steeg PS: Tumor metastasis: Mechanistic insights and clinical challenges. Nat Med. 12:895–904. 2006. View Article : Google Scholar : PubMed/NCBI | |
Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, Vilardell F, Wang Z, Keller JW, Banerjee P, et al: DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 27:1806–1813. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakahashi C, Oda T, Kinoshita T, Ueda T, Konishi M, Nakagohri T, Inoue K, Furuse J, Ochiai A and Ohkohchi N: The impact of liver metastasis on mortality in patients initially diagnosed with locally advanced or resectable pancreatic cancer. Int J Gastrointest Cancer. 33:155–164. 2003. View Article : Google Scholar | |
Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC and Clarke SJ: The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit Rev Oncol Hematol. 88:218–230. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI | |
Ishizuka M, Nagata H, Takagi K, Horie T and Kubota K: Inflammation-based prognostic score is a novel predictor of postoperative outcome in patients with colorectal cancer. Ann Surg. 246:1047–1051. 2007. View Article : Google Scholar : PubMed/NCBI | |
Luo G, Guo M, Liu Z, Xiao Z, Jin K, Long J, Liu L, Liu C, Xu J, Ni Q, et al: Blood neutrophil-lymphocyte ratio predicts survival in patients with advanced pancreatic cancer treated with chemotherapy. Ann Surg Oncol. 22:670–676. 2015. View Article : Google Scholar | |
Ambrus JL, Ambrus CM, Mink IB and Pickren JW: Causes of death in cancer patients. J Med. 6:61–64. 1975.PubMed/NCBI | |
Marshall S, Bacote V and Traxinger RR: Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosyn-thesis in the induction of insulin resistance. J Biol Chem. 266:4706–4712. 1991.PubMed/NCBI | |
Hart GW and Copeland RJ: Glycomics hits the big time. Cell. 143:672–676. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu R, Hawkins M, Barzilai N and Rossetti L: A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature. 393:684–688. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bond MR and Hanover JA: O-GlcNAc cycling: A link between metabolism and chronic disease. Annu Rev Nutr. 33:205–229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fuster MM and Esko JD: The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Rev Cancer. 5:526–542. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chiaradonna F, Ricciardiello F and Palorini R: The nutrient-sensing hexosamine biosynthetic pathway as the hub of cancer metabolic rewiring. Cells. 7:72018. View Article : Google Scholar | |
Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D and Hart GW: Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem. 289:10592–10606. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, et al: Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 541:41–45. 2017. View Article : Google Scholar | |
Shin YK, Park JS, Kim HS, Jun HJ, Kim GE, Suh CO, Yun YS and Pyo H: Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res. 65:9501–9509. 2005. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar : PubMed/NCBI |