1
|
Asai A, Miethke A and Bezerra JA:
Pathogenesis of biliary atresia: Defining biology to understand
clinical phenotypes. Nat Rev Gastroenterol Hepatol. 12:342–352.
2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dehghani SM, Efazati N, Shahramian I,
Haghighat M and Imanieh MH: Evaluation of cholestasis in Iranian
infants less than three months of age. Gastroenterol Hepatol Bed
Bench. 8:42–48. 2015.PubMed/NCBI
|
3
|
Hoerning A, Raub S, Dechêne A, Brosch MN,
Kathemann S, Hoyer PF and Gerner P: Diversity of disorders causing
neonatal cholestasis-the experience of a tertiary pediatric center
in Germany. Front Pediatr. 2:652014. View Article : Google Scholar
|
4
|
Lishuang M, Zhen C, Guoliang Q, Zhen Z,
Chen W, Long L and Shuli L: Laparoscopic portoenterostomy versus
open portoenterostomy for the treatment of biliary atresia: A
systematic review and meta-analysis of comparative studies. Pediatr
Surg Int. 31:261–269. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Venter JC, Adams MD, Myers EW, Li PW,
Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al:
The sequence of the human genome. Science. 291:1304–1351. 2001.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang Y, Wen L and Zhu H: Unveiling the
hidden function of long non-coding RNA by identifying its major
partner-protein. Cell Biosci. 5:592015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wilczynska A and Bushell M: The complexity
of miRNA-mediated repression. Cell Death Differ. 22:22–33. 2015.
View Article : Google Scholar
|
8
|
Fang XY, Pan HF, Leng RX and Ye DQ: Long
noncoding RNAs: Novel insights into gastric cancer. Cancer Lett.
356:357–366. 2015. View Article : Google Scholar
|
9
|
Chen Z, Luo Y, Yang W, Ding L, Wang J, Tu
J, Geng B, Cui Q and Yang J: Comparison analysis of dysregulated
LncRNA profile in mouse plasma and liver after hepatic
ischemia/reperfusion injury. PLoS One. 10:e01334622015. View Article : Google Scholar : PubMed/NCBI
|
10
|
He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu
BM, Xu FY, Zhang L, Lv XW and Li J: Inhibitory effects of long
noncoding RNA MEG3 on hepatic stellate cells activation and liver
fibro-genesis. Biochim Biophys Acta. 1842:2204–2215. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Qiao J, Yao H, Xia Y, Chu P, Li M, Wu Y,
Li W, Ding L, Qi K, Li D, et al: Long non-coding RNAs expression
profiles in hepatocytes of mice after hematopoietic stem cell
transplantation. IUBMB Life. 68:232–241. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Su S, Liu J, He K, Zhang M, Feng C, Peng
F, Li B and Xia X: Overexpression of the long noncoding RNA TUG1
protects against cold-induced injury of mouse livers by inhibiting
apoptosis and inflammation. FEBS J. 283:1261–1274. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu H, Song G, Zhou L, Hu X, Liu M, Nie J,
Lu S, Wu X, Cao Y, Tao L, et al: Compared analysis of LncRNA
expression profiling in pdk1 gene knockout mice at two time points.
Cell Physiol Biochem. 32:1497–1508. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu D, Yang F, Yuan JH, Zhang L, Bi HS,
Zhou CC, Liu F, Wang F and Sun SH: Long noncoding RNAs associated
with liver regeneration 1 accelerates hepatocyte proliferation
during liver regeneration by activating Wnt/beta-catenin signaling.
Hepatology. 58:739–751. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Groen JN, Capraro D and Morris KV: The
emerging role of pseudogene expressed non-coding RNAs in cellular
functions. Int J Biochem Cell Biol. 54:350–355. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Piehler AP, Hellum M, Wenzel JJ, Kaminski
E, Haug KB, Kierulf P and Kaminski WE: The human ABC transporter
pseudogene family: Evidence for transcription and gene-pseudogene
interference. BMC Genomics. 9:1652008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin H, Shabbir A, Molnar M and Lee T: Stem
cell regulatory function mediated by expression of a novel mouse
Oct4 pseudogene. Biochem Biophys Res Commun. 355:111–116. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Karreth FA, Reschke M, Ruocco A, Ng C,
Chapuy B, Léopold V, Sjoberg M, Keane TM, Verma A, Ala U, et al:
The BRAF pseudogene functions as a competitive endogenous RNA and
induces lymphoma in vivo. Cell. 161:319–332. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li S, Zou H, Shao YY, Mei Y, Cheng Y, Hu
DL, Tan ZR and Zhou HH: Pseudogenes of annexin A2, novel prognosis
biomarkers for diffuse gliomas. Oncotarget. 8:106962–106975.
2017.
|
20
|
Pan BL, Tong ZW, Wu L, Pan L, Li JE, Huang
YG, Li SD, Du SX and Li XD: Effects of MicroRNA-206 on osteosarcoma
cell proliferation, apoptosis, migration and invasion by targeting
ANXA2 through the AKT signaling pathway. Cell Physiol Biochem.
45:1410–1422. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pérez-Sánchez G, Jiménez A,
Quezada-Ramírez MA, Estudillo E, Ayala-Sarmiento AE,
Mendoza-Hernández G, Hernández-Soto J, Hernández-Hernández FC,
Cázares-Raga FE and Segovia J: Annexin A1, Annexin A2, and Dyrk 1B
are upregulated during GAS1-induced cell cycle arrest. J Cell
Physiol. 233:4166–4182. 2018. View Article : Google Scholar
|
22
|
Chen J, Cui Z, Yang S, Wu C, Li W, Bao G,
Xu G, Sun Y, Wang L and Zhang J: The upregulation of annexin A2
after spinal cord injury in rats may have implication for astrocyte
proliferation. Neuropeptides. 61:67–76. 2017. View Article : Google Scholar
|
23
|
Stewart AG, Xia YC, Harris T, Royce S,
Hamilton JA and Schuliga M: Plasminogen-stimulated airway smooth
muscle cell proliferation is mediated by urokinase and annexin A2,
involving plasmin-activated cell signalling. Br J Pharmacol.
170:1421–1435. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dong Z, Yao M, Zhang H, Wang L, Huang H,
Yan M, Wu W and Yao D: Inhibition of Annexin A2 gene transcription
is a promising molecular target for hepatoma cell proliferation and
metastasis. Oncol Lett. 7:28–34. 2014. View Article : Google Scholar
|
25
|
Jiang SL, Pan DY, Gu C, Qin HF and Zhao
SH: Annexin A2 silencing enhances apoptosis of human umbilical vein
endothelial cells in vitro. Asian Pac J Trop Med. 8:952–957. 2015.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kolgelier S, Demir NA, Inkaya AC, Sumer S,
Ozcimen S, Demir LS, Pehlivan FS, Arslan M and Arpaci A: Serum
levels of Annexin A2 as a candidate biomarker for hepatic fibrosis
in patients with chronic hepatitis B. Hepat Mon. 15:e306552015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang L, Peng X, Zhang Z, Feng Y, Jia X,
Shi Y, Yang H, Zhang Z, Zhang X, Liu L, et al: Subcellular proteome
analysis unraveled annexin A2 related to immune liver fibrosis. J
Cell Biochem. 110:219–228. 2010.PubMed/NCBI
|
28
|
Yang M, Wang C, Li S, Xv X, She S, Ran X,
Li S, Hu H, Hu P, Zhang D, et al: Annexin A2 promotes liver
fibrosis by mediating von Willebrand factor secretion. Dig Liver
Dis. 49:780–788. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dadhania VP, Muskhelishvili L, Latendresse
JR and Mehendale HM: Hepatic overexpression of Annexin A1 and A2 in
thioacetamide-primed mice protects them against
acetaminophen-induced liver failure and death. Int J Toxicol.
35:654–665. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
31
|
Weerasooriya VS, White FV and Shepherd RW:
Hepatic fibrosis and survival in biliary atresia. J Pediatr.
144:123–125. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Blythe AJ, Fox AH and Bond CS: The ins and
outs of lncRNA structure: How, why and what comes next. Biochim
Biophys Acta. 1859:46–58. 2016. View Article : Google Scholar
|
33
|
Liz J and Esteller M: lncRNAs and
microRNAs with a role in cancer development. Biochim Biophys Acta.
1859:169–176. 2016. View Article : Google Scholar
|
34
|
Zhang H, Chen Z, Wang X, Huang Z, He Z and
Chen Y: Long non-coding RNA: A new player in cancer. J Hematol
Oncol. 6:372013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pink RC and Carter DR: Pseudogenes as
regulators of biological function. Essays Biochem. 54:103–112.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhou X, Deng S, Liu H, Liu Y, Yang Z, Xing
T, Jing B and Zhang X: Knockdown of ubiquitin protein ligase E3A
affects proliferation and invasion, and induces apoptosis of breast
cancer cells through regulation of annexin A2. Mol Med Rep.
12:1107–1113. 2015. View Article : Google Scholar : PubMed/NCBI
|