1
|
Raghu G, Remy-Jardin M, Myers JL, Richeldi
L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F,
et al: Diagnosis of idiopathic pulmonary fibrosis. An official
ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care
Med. 198:e44-e682018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Raghu G, Collard HR, Egan JJ, Martinez FJ,
Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, et
al: An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary
fibrosis: Evidence-based guidelines for diagnosis and management.
Am J Respir Crit Care Med. 183:788–824. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vancheri C, Failla M, Crimi N and Raghu G:
Idiopathic pulmonary fibrosis: A disease with similarities and
links to cancer biology. Eur Respir J. 35:496–504. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lederer DJ and Martinez FJ: Idiopathic
pulmonary fibrosis. N Engl J Med. 378:1811–1823. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hutchinson J, Fogarty A, Hubbard R and
McKeever T: Global incidence and mortality of idiopathic pulmonary
fibrosis: A systematic review. Eur Respir J. 46:795–806. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Navaratnam V, Fogarty AW, Glendening R,
McKeever T and Hubbard RB: The increasing secondary care burden of
idiopathic pulmonary fibrosis: Hospital admission trends in England
from 1998 to 2010. Chest. 143:1078–1084. 2013. View Article : Google Scholar
|
7
|
Sack C, Vedal S, Sheppard L, Raghu G, Barr
RG, Podolanczuk A, Doney B, Hoffman EA, Gassett A,
Hinckley-Stukovsky K, et al: Air pollution and subclinical
interstitial lung disease: The Multi-Ethnic Study of
Atherosclerosis (MESA) air-lung study. Eur Respir J.
50:17005592017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Baumgartner KB, Samet JM, Coultas DB,
Stidley CA, Hunt WC, Colby TV and Waldron JA: Occupational and
environmental risk factors for idiopathic pulmonary fibrosis: A
multicenter case-control study. Collaborating centers. Am J
Epidemiol. 152:307–315. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang YW, Johnson JE, Browning PJ,
Cruz-Gervis RA, Davis A, Graham BS, Brigham KL, Oates JA Jr, Loyd
JE and Stecenko AA: Herpesvirus DNA is consistently detected in
lungs of patients with idiopathic pulmonary fibrosis. J Clin
Microbiol. 41:2633–2640. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tobin RW, Pope CE II, Pellegrini CA, Emond
MJ, Sillery J and Raghu G: Increased prevalence of gastroesophageal
reflux in patients with idiopathic pulmonary fibrosis. Am J Respir
Crit Care Med. 158:1804–1808. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fingerlin TE, Murphy E, Zhang W, Peljto
AL, Brown KK, Steele MP, Loyd JE, Cosgrove GP, Lynch D, Groshong S,
et al: Genome-wide association study identifies multiple
susceptibility loci for pulmonary fibrosis. Nat Genet. 45:613–620.
2013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Noth I, Zhang Y, Ma SF, Flores C, Barber
M, Huang Y, Broderick SM, Wade MS, Hysi P, Scuirba J, et al:
Genetic variants associated with idiopathic pulmonary fibrosis
susceptibility and mortality: A genome-wide association study.
Lancet Respir Med. 1:309–317. 2013. View Article : Google Scholar
|
13
|
Peljto AL, Zhang Y, Fingerlin TE, Ma SF,
Garcia JG, Richards TJ, Silveira LJ, Lindell KO, Steele MP, Loyd
JE, et al: Association between the MUC5B promoter polymorphism and
survival in patients with idiopathic pulmonary fibrosis. JAMA.
309:2232–2239. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mora AL, Rojas M, Pardo A and Selman M:
Emerging therapies for idiopathic pulmonary fibrosis, a progressive
age-related disease. Nat Rev Drug Discov. 16:755–772. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Gomperts BN and Strieter RM: Fibrocytes in
lung disease. J Leukoc Biol. 82:449–456. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pardo A and Selman M: Lung fibroblasts,
aging, and idiopathic pulmonary fibrosis. Ann Am Thorac Soc.
13(Suppl 5): S417–S421. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ramos C, Montaño M, García-Alvarez J, Ruiz
V, Uhal BD, Selman M and Pardo A: Fibroblasts from idiopathic
pulmonary fibrosis and normal lungs differ in growth rate,
apoptosis, and tissue inhibitor of metalloproteinases expression.
Am J Respir Cell Mol Biol. 24:591–598. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pierce EM, Carpenter K, Jakubzick C,
Kunkel SL, Evanoff H, Flaherty KR, Martinez FJ, Toews GB and
Hogaboam CM: Idiopathic pulmonary fibrosis fibroblasts migrate and
proliferate to CC chemokine ligand 21. Eur Respir J. 29:1082–1093.
2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kurundkar AR, Kurundkar D, Rangarajan S,
Locy ML, Zhou Y, Liu RM, Zmijewski J and Thannickal VJ: The
matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent
profibrotic signaling in fibroblasts and contributes to fibrogenic
responses to lung injury. FASEB J. 30:2135–2150. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Conte E, Gili E, Fruciano M, Korfei M,
Fagone E, Iemmolo M, Lo Furno D, Giuffrida R, Crimi N, Guenther A
and Vancheri C: PI3K p110γ overexpression in idiopathic pulmonary
fibrosis lung tissue and fibroblast cells: In vitro effects of its
inhibition. Lab Invest. 93:566–576. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vuga LJ, Ben-Yehudah A,
Kovkarova-Naumovski E, Oriss T, Gibson KF, Feghali-Bostwick C and
Kaminski N: WNT5A is a regulator of fibroblast proliferation and
resistance to apoptosis. Am J Respir Cell Mol Biol. 41:583–589.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Desai O, Winkler J, Minasyan M and Herzog
EL: The role of immune and inflammatory cells in idiopathic
pulmonary fibrosis. Front Med. 5:432018. View Article : Google Scholar
|
23
|
Vejnar CE and Zdobnov EM: MiRmap:
Comprehensive prediction of microRNA target repression strength.
Nucleic Acids Res. 40:11673–11683. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:2015. View Article : Google Scholar
|
25
|
Sheu CC, Tsai MJ, Chen FW, Chang KF, Chang
WA, Chong IW, Kuo PL and Hsu YL: Identification of novel genetic
regulations associated with airway epithelial homeostasis using
next-generation sequencing data and bioinformatics approaches.
Oncotarget. 8:82674–82688. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang WA, Tsai MJ, Jian SF, Sheu CC and
Kuo PL: Systematic analysis of transcriptomic profiles of COPD
airway epithelium using next-generation sequencing and
bioinformatics. Int J Chron Obstruct Pulmon Dis. 13:2387–2398.
2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tsai MJ, Chang WA, Jian SF, Chang KF, Sheu
CC and Kuo PL: Possible mechanisms mediating apoptosis of bronchial
epithelial cells in chronic obstructive pulmonary disease - A
next-generation sequencing approach. Pathol Res Pract.
214:1489–1496. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Friedländer MR, Mackowiak SD, Li N, Chen W
and Rajewsky N: miRDeep2 accurately identifies known and hundreds
of novel microRNA genes in seven animal clades. Nucleic Acids Res.
40:37–52. 2012. View Article : Google Scholar :
|
30
|
Kent WJ, Sugnet CW, Furey TS, Roskin KM,
Pringle TH, Zahler AM and Haussler D: The human genome browser at
UCSC. Genome Res. 12:996–1006. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Galipon J, Ishii R, Suzuki Y, Tomita M and
Ui-Tei K: Differential binding of three major human ADAR isoforms
to coding and long non-coding transcripts. Genes. 8:E682017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc. 7:562–578. 2012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Krämer A, Green J, Pollard J Jr and
Tugendreich S: Causal analysis approaches in ingenuity pathway
analysis. Bioinformatics. 30:523–530. 2014. View Article : Google Scholar :
|
35
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar
|
37
|
Edgar R, Domrachev M and Lash AE: Gene
Expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar :
|
38
|
Meltzer EB, Barry WT, D’Amico TA, Davis
RD, Lin SS, Onaitis MW, Morrison LD, Sporn TA, Steele MP and Noble
PW: Bayesian probit regression model for the diagnosis of pulmonary
fibrosis: Proof-of-principle. BMC Med Genomics. 4:702011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Peng R, Sridhar S, Tyagi G, Phillips JE,
Garrido R, Harris P, Burns L, Renteria L, Woods J, Chen L, et al:
Bleomycin induces molecular changes directly relevant to idiopathic
pulmonary fibrosis: A model for ‘active’ disease. PLoS One.
8:e593482013. View Article : Google Scholar
|
40
|
Barratt SL, Creamer A, Hayton C and
Chaudhuri N: Idiopathic pulmonary fibrosis (IPF): An overview. J
Clin Med. 7:E2012018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sgalla G, Iovene B, Calvello M, Ori M,
Varone F and Richeldi L: Idiopathic pulmonary fibrosis:
Pathogenesis and management. Respir Res. 19:322018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Walraven M and Hinz B: Therapeutic
approaches to control tissue repair and fibrosis: Extracellular
matrix as a game changer. Matrix Biol. 71–72. 205–224. 2018.
|
43
|
Kwapiszewska G, Gungl A, Wilhelm J, Marsh
LM, Thekkekara Puthenparampil H, Sinn K, Didiasova M, Klepetko W,
Kosanovic D, Schermuly RT, et al: Transcriptome profiling reveals
the complexity of pirfenidone effects in idiopathic pulmonary
fibrosis. Eur Respir J. 52:18005642018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Soroosh A, Albeiroti S, West GA, Willard
B, Fiocchi C and de la Motte CA: Crohn’s disease fibroblasts
overproduce the novel protein KIAA1199 to create proinflammatory
hyaluronan fragments. Cell Mol Gastroenterol Hepatol. 2:358–368.
e42016. View Article : Google Scholar
|
45
|
Li L, Yan LH, Manoj S, Li Y and Lu L:
Central role of CEMIP in tumorigenesis and its potential as
therapeutic target. J Cancer. 8:2238–2246. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Baskaran Y, Ang KC, Anekal PV, Chan WL,
Grimes JM, Manser E and Robinson RC: An in cellulo-derived
structure of PAK4 in complex with its inhibitor Inka1. Nat Commun.
6:86812015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gnesutta N, Qu J and Minden A: The
serine/threonine kinase PAK4 prevents caspase activation and
protects cells from apoptosis. J Biol Chem. 276:14414–14419. 2001.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Gnesutta N and Minden A: Death
receptor-induced activation of initiator caspase 8 is antagonized
by serine/threonine kinase PAK4. Mol Cell Biol. 23:7838–7848. 2003.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Callow MG, Clairvoyant F, Zhu S, Schryver
B, Whyte DB, Bischoff JR, Jallal B and Smeal T: Requirement for
PAK4 in the anchorage-independent growth of human cancer cell
lines. J Biol Chem. 277:550–558. 2002. View Article : Google Scholar
|
50
|
Siu MK, Chan HY, Kong DS, Wong ES, Wong
OG, Ngan HY, Tam KF, Zhang H, Li Z, Chan QK, et al: p21-activated
kinase 4 regulates ovarian cancer cell proliferation, migration,
and invasion and contributes to poor prognosis in patients. Proc
Natl Acad Sci USA. 107:18622–18627. 2010. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wong LE, Chen N, Karantza V and Minden A:
The Pak4 protein kinase is required for oncogenic transformation of
MDA-MB-231 breast cancer cells. Oncogenesis. 2:e502013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Guo Q, Su N, Zhang J, Li X, Miao Z, Wang
G, Cheng M, Xu H, Cao L and Li F: PAK4 kinase-mediated SCG10
phosphorylation involved in gastric cancer metastasis. Oncogene.
33:3277–3287. 2014. View Article : Google Scholar
|
53
|
Wang C, Li Y, Zhang H, Liu F, Cheng Z,
Wang D, Wang G, Xu H, Zhao Y, Cao L, et al: Oncogenic PAK4
regulates Smad2/3 axis involving gastric tumorigenesis. Oncogene.
33:3473–3484. 2014. View Article : Google Scholar
|
54
|
Xia M, Wei J and Tong K: MiR-224 promotes
proliferation and migration of gastric cancer cells through
targeting PAK4. Pharmazie. 71:460–464. 2016.PubMed/NCBI
|
55
|
Zhang X, Zhang X, Li Y, Shao Y, Xiao J,
Zhu G and Li F: PAK4 regulates G6PD activity by p53 degradation
involving colon cancer cell growth. Cell Death Dis. 8:e28202017.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Pasca di Magliano M, Di Lauro R and
Zannini M: Pax8 has a key role in thyroid cell differentiation.
Proc Natl Acad Sci USA. 97:13144–13149. 2000. View Article : Google Scholar : PubMed/NCBI
|
57
|
Mansouri A, Chowdhury K and Gruss P:
Follicular cells of the thyroid gland require Pax8 gene function.
Nat Genet. 19:87–90. 1998. View Article : Google Scholar : PubMed/NCBI
|
58
|
Muratovska A, Zhou C, He S, Goodyer P and
Eccles MR: Paired-Box genes are frequently expressed in cancer and
often required for cancer cell survival. Oncogene. 22:7989–7997.
2003. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ghannam-Shahbari D, Jacob E, Kakun RR,
Wasserman T, Korsensky L, Sternfeld O, Kagan J, Bublik DR,
Aviel-Ronen S, Levanon K, et al: PAX8 activates a p53-p21-dependent
pro-proliferative effect in high grade serous ovarian carcinoma.
Oncogene. 37:2213–2224. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Di Palma T, Filippone MG, Pierantoni GM,
Fusco A, Soddu S and Zannini M: Pax8 has a critical role in
epithelial cell survival and proliferation. Cell Death Dis.
4:e7292013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Struyk AF, Canoll PD, Wolfgang MJ, Rosen
CL, D’Eustachio P and Salzer JL: Cloning of neurotrimin defines a
new subfamily of differentially expressed neural cell adhesion
molecules. J Neurosci. 15:2141–2156. 1995. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gil OD, Zanazzi G, Struyk AF and Salzer
JL: Neurotrimin mediates bifunctional effects on neurite outgrowth
via homophilic and heterophilic interactions. J Neurosci.
18:9312–9325. 1998. View Article : Google Scholar : PubMed/NCBI
|
63
|
Fagerberg L, Hallström BM, Oksvold P,
Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S,
Danielsson A, Edlund K, et al: Analysis of the human
tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics.
13:397–406. 2014. View Article : Google Scholar :
|
64
|
Lin C, Lu W, Zhai L, Bethea T, Berry K, Qu
Z, Waud WR and Li Y: Mesd is a general inhibitor of different Wnt
ligands in Wnt/LRP signaling and inhibits PC-3 tumor growth in
vivo. FEBS Lett. 585:3120–3125. 2011. View Article : Google Scholar : PubMed/NCBI
|
65
|
Lu W, Liu CC, Thottassery JV, Bu G and Li
Y: Mesd is a universal inhibitor of Wnt coreceptors LRP5 and LRP6
and blocks Wnt/beta-catenin signaling in cancer cells.
Biochemistry. 49:4635–4643. 2010. View Article : Google Scholar : PubMed/NCBI
|
66
|
Inokuchi J, Komiya M, Baba I, Naito S,
Sasazuki T and Shirasawa S: Deregulated expression of KRAP, a novel
gene encoding actin-interacting protein, in human colon cancer
cells. J Hum Genet. 49:46–52. 2004. View Article : Google Scholar
|
67
|
Fujimoto T, Koyanagi M, Baba I,
Nakabayashi K, Kato N, Sasazuki T and Shirasawa S: Analysis of KRAP
expression and localization, and genes regulated by KRAP in a human
colon cancer cell line. J Hum Genet. 52:978–984. 2007. View Article : Google Scholar : PubMed/NCBI
|