1
|
Qian J, Ma X, Xun Y and Pan L: Protective
effect of forsythiaside A on OVA-induced asthma in mice. Eur J
Pharmacol. 812:250–255. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liu J, Wei Y, Luo Q, Xu F, Zhao Z, Zhang
H, Lu L, Sun J, Liu F, Du X, et al: Baicalin attenuates
inflammation in mice with OVA-induced asthma by inhibiting NF-κB
and suppressing CCR7/CCL19/CCL21. Int J Mol Med. 38:1541–1548.
2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ntontsi P, Papathanassiou E, Loukides S,
Bakakos P and Hillas G: Targeted anti-IL-13 therapies in asthma:
Current data and future perspectives. Expert Opin Investig Drugs.
27:179–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gu X, Zhang Q, Du Q, Shen H and Zhu Z:
Pinocembrin attenuates allergic airway inflammation via inhibition
of NF-κB pathway in mice. Int Immunopharmacol. 53:90–95. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ji P, Hu H, Yang X, Wei X, Zhu C, Liu J,
Feng Y, Yang F, Okanurak K, Li N, et al: AcCystatin, an
immunoregulatory molecule from Angiostrongylus cantonensis,
ameliorates the asthmatic response in an aluminium
hydroxide/ovalbumin-induced rat model of asthma. Parasitol Res.
114:613–624. 2015. View Article : Google Scholar
|
6
|
Rajajendram R, Tham CL, Akhtar MN,
Sulaiman MR and Israf DA: Inhibition of epithelial CC-Family
chemokine synthesis by the synthetic chalcone DMPF-1 via disruption
of NF-κB nuclear translocation and suppression of experimental
asthma in mice. Mediators Inflamm. 2015.176926:2015.
|
7
|
Lian Q, Jiang W, Cheng Y, Cao H, Liu M,
Wang J, Li Y, Song X and Wang F: A novel pentapeptide originated
from calf thymus named TIPP shows an inhibitory effect on lung
allergic inflammation. Int Immunopharmacol. 24:256–266. 2015.
View Article : Google Scholar
|
8
|
Zhang Q, Wang L, Chen B, Zhuo Q, Bao C and
Lin L: Propofol inhibits NF-κB activation to ameliorate airway
inflammation in ovalbumin (OVA)-induced allergic asthma mice. Int
Immunopharmacol. 51:158–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Duan W, Chan JH, Wong CH, Leung BP and
Wong WS: Anti-inflammatory effects of mitogen-activated protein
kinase kinase inhibitor U0126 in an asthma mouse model. J Immunol.
172:7053–7059. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Duan W and Wong WS: Targeting
mitogen-activated protein kinases for asthma. Curr Drug Targets.
7:691–698. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ye P, Yang XL, Chen X and Shi C:
Hyperoside attenuates OVA-induced allergic airway inflammation by
activating Nrf2. Int Immunopharmacol. 44:168–173. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shen ML, Wang CH, Lin CH, Zhou N, Kao ST
and Wu DC: Luteolin Attenuates Airway Mucus Overproduction via
Inhibition of the GABAergic System. Sci Rep. 6:327562016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Shin NR, Ryu HW, Ko JW, Park SH, Yuk HJ,
Kim HJ, Kim JC, Jeong SH and Shin IS: Artemisia argyi attenuates
airway inflammation in ovalbumin-induced asthmatic animals. J
Ethnopharmacol. 209:108–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Osorio-Guarín JA, Enciso-Rodríguez FE,
González C, Fernández-Pozo N, Mueller LA and Barrero LS:
Association analysis for disease resistance to Fusarium oxysporum
in cape gooseberry (Physalis peruviana L). BMC Genomics.
17:2482016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu SJ, Tsai JY, Chang SP, Lin DL, Wang SS,
Huang SN and Ng LT: Supercritical carbon dioxide extract exhibits
enhanced antioxidant and anti-inflammatory activities of Physalis
peruviana. J Ethnopharmacol. 108:407–413. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Franco LA, Matiz GE, Calle J, Pinzon R and
Ospina LF: Antiinflammatory activity of extracts and fractions
obtained from Physalis peruviana L. calyces. Biomedica. 27:110–115.
2007.in Spanish. View Article : Google Scholar : PubMed/NCBI
|
17
|
Castro J, Ocampo Y and Franco L: Cape
Gooseberry [Physalis peruviana L.] Calyces Ameliorate TNBS
Acid-induced Colitis in Rats. J Crohn's Colitis. 9:1004–1015. 2015.
View Article : Google Scholar
|
18
|
Park HA, Lee JW, Kwon OK, Lee G, Lim Y,
Kim JH, Paik JH, Choi S, Paryanto I, Yuniato P, et al: Physalis
peruviana L. inhibits airway inflammation induced by cigarette
smoke and lipopolysaccharide through inhibition of extracellular
signal-regulated kinase and induction of heme oxygenase-1. Int J
Mol Med. 40:1557–1565. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jeon CM, Shin IS, Shin NR, Hong JM, Kwon
OK, Kim HS, Oh SR, Myung PK and Ahn KS: Siegesbeckia glabrescens
attenuates allergic airway inflammation in LPS-stimulated RAW 264.7
cells and OVA induced asthma murine model. In t. Immunopharmacol.
22:414–419. 2014. View Article : Google Scholar
|
20
|
Lee JW, Park JW, Shin NR, Park SY, Kwon
OK, Park HA, Lim Y, Ryu HW, Yuk HJ, Kim JH, et al: Picrasma
quassiodes (D. Don) Benn. attenuates lipopolysaccharide
(LPS)-induced acute lung injury. Int J Mol Med. 38:834–844. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kupczyk M and Kuna P: Benralizumab: An
anti-IL-5 receptor α monoclonal antibody in the treatment of
asthma. Immunotherapy. 10:349–359. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Deo SS, Mistry KJ, Kakade AM and Niphadkar
PV: Role played by Th2 type cytokines in IgE mediated allergy and
asthma. Lung India. 27:66–71. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu W, Hu M, Zhang Q, Yu J and Su W:
Effects of anthraquinones from Cassia occidentalis L. on
ovalbumin-induced airways inflammation in a mouse model of allergic
asthma. J Ethnopharmacol. 221:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ma Y, Tang T, Sheng L, Wang Z, Tao H,
Zhang Q, Zhang Y and Qi Z: Aloin suppresses lipopolysaccharide
induced inflammation by inhibiting JAK1 STAT1/3 activation and ROS
production in RAW264.7 cells. Int J Mol Med. 42:1925–1934.
2018.PubMed/NCBI
|
25
|
Lee JW, Seo KH, Ryu HW, Yuk HJ, Park HA,
Lim Y, Ahn KS and Oh SR: Anti-inflammatory effect of stem bark of
Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated
RAW264.7 macrophages and LPS-induced murine model of acute lung
injury. J Ethnopharmacol. 210:23–30. 2018. View Article : Google Scholar
|
26
|
Gao Y, Zhaoyu L, Xiangming F, Chunyi L,
Jiayu P, Lu S, Jitao C, Liangcai C and Jifang L: Abietic acid
attenuates allergic airway inflammation in a mouse allergic asthma
model. Int Immunopharmacol. 38:261–266. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu J, Zhu YT, Wang GZ, Han D, Wu YY, Zhang
DX, Liu Y, Zhang YH, Xie XM, Li SJ, et al: The PPARγ agonist,
rosiglitazone, attenuates airway inflammation and remodeling via
heme oxygenase-1 in murine model of asthma. Acta Pharmacol Sin.
36:171–178. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang C, Choi YH, Xian Z, Zheng M, Piao H
and Yan G: Aloperine suppresses allergic airway inflammation
through NF-κB, MAPK, and Nrf2/HO-1 signaling pathways in mice. Int
Immunopharmacol. 65:571–579. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim YH, Choi YJ, Kang MK, Park SH, Antika
LD, Lee EJ, Kim DY and Kang YH: Astragalin inhibits allergic
inflammation and airway thickening in ovalbumin-challenged mice. J
Agric Food Chem. 65:836–845. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fang P, Shi HY, Wu XM, Zhang YH, Zhong YJ,
Deng WJ, Zhang YP and Xie M: Targeted inhibition of GATA-6
attenuates airway inflammation and remodeling by regulating
caveolin-1 through TLR2/MyD88/NF-κB in murine model of asthma. Mol
Immunol. 75:144–150. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wardlaw AJ, Brightling C, Green R,
Woltmann G and Pavord I: Eosinophils in asthma and other allergic
diseases. Br Med Bull. 56:985–1003. 2000. View Article : Google Scholar
|
32
|
Venturini CL, Macho A, Arunachalam K, de
Almeida DAT, Rosa SIG, Pavan E, Balogun SO, Damazo AS and Martins
DTO: Vitexin inhibits inflammation in murine ovalbumin-induced
allergic asthma. Biomed Pharmacother. 97:143–151. 2018. View Article : Google Scholar
|
33
|
Byrne AJ, Jones CP, Gowers K, Rankin SM
and Lloyd CM: Lung macrophages contribute to house dust mite driven
airway remodeling via HIF-1α. PLoS One. 8:e692462013. View Article : Google Scholar
|
34
|
Poston RN, Chanez P, Lacoste JY,
Litchfield T, Lee TH and Bousquet J: Immunohistochemical
characterization of the cellular infiltration in asthmatic bronchi.
Am Rev Respir Dis. 145:918–921. 1992. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li R, Wang J, Zhu F, Li R, Liu B, Xu W, He
G, Cao H, Wang Y and Yang J: HMGB1 regulates T helper 2 and T
helper17 cell differentiation both directly and indirectly in
asthmatic mice. Mol Immunol. 97:45–55. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hao W, Wang J, Zhang Y, Wang Y, Sun L and
Han W: Leptin positively regulates MUC5AC production and secretion
induced by interleukin-13 in human bronchial epithelial cells.
Biochem Biophys Res Commun. 493:979–984. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Licari A, Castagnoli R, Panfili E,
Marseglia A, Brambilla I and Marseglia GL: An update on anti-IgE
therapy in pediatric respiratory diseases. Curr Respir Med Rev.
13:22–29. 2017. View Article : Google Scholar :
|
38
|
Bax HJ, Keeble AH and Gould HJ:
Cytokinergic IgE action in mast cell activation. Front Immunol.
3:2292012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Song YD, Li XZ, Wu YX, Shen Y, Liu FF, Gao
PP, Sun L and Qian F: Emodin alleviates alternatively activated
macrophage and asthmatic airway inflammation in a murine asthma
model. Acta Pharmacol Sin. 39:1317–1325. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schneider D, Hong JY, Bowman ER, Chung Y,
Nagarkar DR, McHenry CL, Goldsmith AM, Bentley JK, Lewis TC and
Hershenson MB: Macrophage/epithelial cell CCL2 contributes to
rhinovirus-induced hyperresponsiveness and inflammation in a mouse
model of allergic airways disease. Am J Physiol Lung Cell Mol
Physiol. 304:L162–L169. 2013. View Article : Google Scholar :
|
41
|
Nguyen TH, Maltby S, Simpson JL, Eyers F,
Baines KJ, Gibson PG, Foster PS and Yang M: TNF-α and macrophages
are critical for respiratory syncytial virus-induced exacerbations
in a mouse model of allergic airways disease. J Immunol.
196:3547–3558. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lillehoj ER and Kim KC: Airway mucus: Its
components and function. Arch Pharm Res. 25:770–780. 2002.
View Article : Google Scholar
|
43
|
Evans CM, Kim K, Tuvim MJ and Dickey BF:
Mucus hypersecretion in asthma: Causes and effects. Curr Opin Pulm
Med. 15:4–11. 2009. View Article : Google Scholar :
|
44
|
Xiong YY, Wang JS, Wu FH, Li J and Kong
LY: The effects of (±)-Praeruptorin A on airway inflammation,
remodeling and transforming growth factor-β1/Smad signaling pathway
in a murine model of allergic asthma. Int Immunopharmacol.
14:392–400. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Huang W, Li ML, Xia MY and Shao JY:
Fisetin-treatment alleviates airway inflammation through inhbition
of MyD88/NF-κB signaling pathway. Int J Mol Med. 42:208–218.
2018.PubMed/NCBI
|
46
|
Wei DZ, Guo XY, Lin LN, Lin MX, Gong YQ,
Ying BY and Huang MY: Effects of Angelicin on Ovalbumin
(OVA)-Induced Airway Inflammation in a Mouse Model of Asthma.
Inflammation. 39:1876–1882. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yoon SC, Je IG, Cui X, Park HR, Khang D,
Park JS, Kim SH and Shin TY: Anti-allergic and anti-inflammatory
effects of aqueous extract of Pogostemon cablin. Int J Mol Med.
37:217–224. 2016. View Article : Google Scholar
|
48
|
Wijerathne CUB, Seo CS, Song JW, Park HS,
Moon OS, Won YS, Kwon HJ and Son HY: Isoimperatorin attenuates
airway inflammation and mucus hypersecretion in an
ovalbumin-induced murine model of asthma. Int Immunopharmacol.
49:67–76. 2017. View Article : Google Scholar : PubMed/NCBI
|