1
|
Li D, Xiong Q, Peng J, Hu B, Li W, Zhu Y
and Shen X: Hydrogen Sulfide upregulates the expression of
ATP-binding cassette transporter A1 via promoting nuclear
translocation of PPARα. Int J Mol Sci. 17:E6352016. View Article : Google Scholar
|
2
|
Wu D, Zheng N, Qi K, Cheng H, Sun Z, Gao
B, Zhang Y, Pang W, Huangfu C, Ji S, et al: Exogenous hydrogen
sulfide mitigates the fatty liver in obese mice through improving
lipid metabolism and antioxidant potential. Med Gas Res. 5:12015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Li H, Mani S, Wu L, Fu M, Shuang T, Xu C
and Wang R: The interaction of estrogen and CSE/H2S
pathway in the development of atherosclerosis. Am J Physiol Heart
Circ Physiol. 312:H406–H414. 2017. View Article : Google Scholar
|
4
|
Gao L, Xu Z, Yin Z, Chen K, Wang C and
Zhang H: Association of hydrogen sulfide with alterations of
monocyte chemokine receptors, CCR2 and CX3CR1 in patients with
coronary artery disease. Inflamm Res. 64:627–635. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lin XL, Xiao LL, Tang ZH, Jiang ZS and Liu
MH: Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed
Pharmacother. 104:36–44. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shapiro MD and Fazio S: PCSK9 and
atherosclerosis-lipids and beyond. J Atheroscler Thromb.
24:462–472. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shahreyar M, Salem SA, Nayyar M, George
LK, Garg N and Koshy SKG: Hyperlipidemia: Management with
proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. J
Am Board Fam Med. 31:628–634. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ochin CC and Garelnabi M: Berberine
encapsulated PLGA-PEG nanoparticles modulate PCSK-9 in HepG2 Cells.
Cardiovasc Hematol Disord Drug Targets. 18:61–70. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tavori H, Rashid S and Fazio S: On the
function and homeostasis of PCSK9: Reciprocal interaction with LDLR
and additional lipid effects. Atherosclerosis. 238:264–270. 2015.
View Article : Google Scholar :
|
10
|
Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D
and Park SW: Sterol-dependent regulation of proprotein convertase
subtilisin/kexin type 9 expression by sterol-regulatory element
binding protein-2. J Lipid Res. 49:399–409. 2008. View Article : Google Scholar
|
11
|
Krycer JR, Sharpe LJ, Luu W and Brown AJ:
The Akt-SREBP nexus: Cell signaling meets lipid metabolism. Trends
Endocrinol Metab. 21:268–276. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M,
Moore PK and Bian JS: A review of hydrogen sulfide synthesis,
metabolism, and measurement: Is modulation of hydrogen sulfide a
novel therapeutic for cancer? Antioxid Redox Signal. 2018.
View Article : Google Scholar
|
13
|
Altaany Z, Moccia F, Munaron L, Mancardi D
and Wang R: Hydrogen sulfide and endothelial dysfunction:
Relationship with nitric oxide. Curr Med Chem. 21:3646–3661. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang Y, Wang X, Liang X, Wu J, Dong S, Li
H, Jin M, Sun D, Zhang W and Zhong X: Inhibition of hydrogen
sulfide on the proliferation of vascular smooth muscle cells
involved in the modulation of calcium sensing receptor in high
homocysteine. Exp Cell Res. 347:184–191. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cheung SH and Lau JYW: Hydrogen sulfide
mediates atheroprotection against oxidative stress via
S-sulfhydration. PLoS One. 13:e01941762018. View Article : Google Scholar
|
16
|
Abifadel M, Varret M, Rabès JP, Allard D,
Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich
D, et al: Mutations in PCSK9 cause autosomal dominant
hypercholesterolemia. Nat Genet. 34:154–156. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Singh A and Davidson M: Update on PCSK9
therapies for the treatment of dyslipidemia. Expert Rev Endocrinol
Metab. 11:87–95. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shapiro MD, Tavori H and Fazio S: PCSK9:
From basic science discoveries to clinical trials. Circ Res.
122:1420–1438. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Elbitar S, Susan-Resiga D, Ghaleb Y, El
Khoury P, Peloso G, Stitziel N, Rabès JP, Carreau V, Hamelin J,
Ben-Djoudi-Ouadda A, et al: New sequencing technologies help
revealing unexpected mutations in autosomal dominant
hypercholesterolemia. Sci Rep. 8:19432018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Reiss AB, Shah N, Muhieddine D, Zhen J,
Yudkevich J, Kasselman LJ and DeLeon J: PCSK9 in cholesterol
metabolism: From bench to bedside. Clin Sci (Lond). 132:1135–1153.
2018. View Article : Google Scholar
|
21
|
Spigoni V, Aldigeri R, Antonini M, Micheli
MM, Fantuzzi F, Fratter A, Pellizzato M, Derlindati E, Zavaroni I,
Bonadonna RC and Dei Cas A: Effects of a new nutraceutical
formulation (berberine, red yeast rice and chitosan) on non-HDL
cholesterol levels in individuals with dyslipidemia: Results from a
randomized, double blind, placebo-controlled study. Int J Mol Sci.
18:E14982017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Poirier S, Hamouda HA, Villeneuve L,
Demers A and Mayer G: Trafficking dynamics of PCSK9-induced LDLR
degradation: Focus on human PCSK9 mutations and C-terminal domain.
PLoS One. 11:e01572302016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tavori H, Giunzioni I, Predazzi IM,
Plubell D, Shivinsky A, Miles J, Devay RM, Liang H, Rashid S,
Linton MF and Fazio S: Human PCSK9 promotes hepatic lipogenesis and
atherosclerosis development via apoE- and LDLR-mediated mechanisms.
Cardiovasc Res. 110:268–278. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lagace TA, Curtis DE, Garuti R, McNutt MC,
Park SW, Prather HB, Anderson NN, Ho YK, Hammer RE and Horton JD:
Secreted PCSK9 decreases the number of LDL receptors in hepatocytes
and in livers of parabiotic mice. J Clin Invest. 116:2995–3005.
2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qu K, Liu YM, He XL, Zhang H, Zhang K,
Peng J, Tang YL, Yu XH, Zeng JF, Lei JJ, et al: H2 S inhibits
apo(a) expression and secretion through PKCα/FXR and Akt/HNF4α
pathways in HepG2 cells. Cell Biol Int. 40:906–916. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Park SW, Moon YA and Horton JD:
Post-transcriptional regulation of low density lipoprotein receptor
protein by proprotein convertase subtilisin/kexin type 9a in mouse
liver. J Biol Chem. 279:50630–50638. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Horton JD, Goldstein JL and Brown MS:
SREBPs: Activators of the complete program of cholesterol and fatty
acid synthesis in the liver. J Clin Invest. 109:1125–1131. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lebeau P, Al-Hashimi A, Sood S, Lhoták Š,
Yu P, Gyulay G, Paré G, Chen SR, Trigatti B, Prat A, et al:
Endoplasmic reticulum stress and Ca2+ depletion
differentially modulate the sterol regulatory protein PCSK9 to
control lipid metabolism. J Biol Chem. 292:1510–1523. 2017.
View Article : Google Scholar
|
29
|
Dubuc G, Chamberland A, Wassef H, Davignon
J, Seidah NG, Bernier L and Prat A: Statins upregulate PCSK9, the
gene encoding the proprotein convertase neural apoptosis-regulated
convertase-1 implicated in familial hypercholesterolemia.
Arterioscler Thromb Vasc Biol. 24:1454–1459. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chae HS, You BH, Kim DY, Lee H, Ko HW, Ko
HJ, Choi YH, Choi SS and Chin YW: Sauchinone controls hepatic
cholesterol homeostasis by the negative regulation of PCSK9
transcriptional network. Sci Rep. 8:67372018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang J, Chen S, Cai D, Bian D and Wang F:
Long noncoding RNA lncARSR promotes hepatic cholesterol
biosynthesis via modulating Akt/SREBP-2/HMGCR pathway. Life Sci.
203:48–53. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zheng D, Chen Z, Chen J, Zhuang X, Feng J
and Li J: Exogenous hydrogen sulfide exerts proliferation,
anti-apoptosis, migration effects and accelerates cell cycle
progression in multiple myeloma cells via activating the Akt
pathway. Oncol Rep. 36:1909–1916. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gong D, Cheng HP, Xie W, Zhang M, Liu D,
Lan G, Huang C, Zhao ZW, Chen LY, Yao F, et al: Cystathionine
γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and
influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1
pathway. Biochem Biophys Res Commun. 470:107–116. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
He NY, Li Q, Wu CY, Ren Z, Gao Y, Pan LH,
Wang MM, Wen HY, Jiang ZS, Tang ZH and Liu LS: Lowering serum
lipids via PCSK9-targeting drugs: Current advances and future
perspectives. Acta Pharmacol Sin. 38:301–311. 2017. View Article : Google Scholar : PubMed/NCBI
|