1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
VanderWalde A and Hurria A: Aging and
osteoporosis in breast and prostate cancer. CA Cancer J Clin.
61:139–156. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nelson BA, Shappell SB, Chang SS, Wells N,
Farnham SB, Smith JA Jr and Cookson MS: Tumour volume is an
independent predictor of prostate-specific antigen recurrence in
patients undergoing radical prostatectomy for clinically localized
prostate cancer. BJU Int. 97:1169–1172. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang HF, Wang HL, Xu N, Li SW, Ji GY, Li
XM, Pan YZ, Zhang L, Zhao XJ and Gao HW: Mass screening of 12,027
elderly men for prostate carcinoma by measuring serum prostate
specific antigen. Chin Med J (Engl). 117:67–70. 2004.
|
5
|
Jin Y, Chen Y, Jiang Y and Xu M: Proteome
analysis of the silkworm (Bombyx mori. L) colleterial gland during
different development stages. Arch Insect Biochem Physiol.
61:42–50. 2006. View Article : Google Scholar
|
6
|
Fan R, Li X, Du W, Zou X, Du R, Zhao L,
Luo G, Mo P, Xia L, Pan Y, et al: Adenoviral-mediated RNA
interference targeting URG11 inhibits growth of human
hepatocellular carcinoma. Int J Cancer. 128:2980–2993. 2011.
View Article : Google Scholar
|
7
|
Lian Z, Liu J, Li L, Li X, Tufan NL,
Clayton M, Wu MC, Wang HY, Arbuthnot P, Kew M, et al: Upregulated
expression of a unique gene by hepatitis B x antigen promotes
hepatocellular growth and tumorigenesis. Neoplasia. 5:229–244.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xie H and Liu J: Increased expression
URG11 in hepatocellular carcinoma tissues promotes the growth of
hepatocellular carcinoma cells. Xi bao yu fen zi mian yi xue za
zhi. 31:1523–1527. 2015.In Chinese. PubMed/NCBI
|
9
|
Du R, Xia L, Sun S, Lian Z, Zou X, Gao J,
Xie H, Fan R, Song J, Li X, et al: URG11 promotes gastric cancer
growth and invasion by activation of beta-catenin signalling
pathway. J Cell Mol Med. 14:621–635. 2010.
|
10
|
Peng W, Zhang J and Liu J: URG11 predicts
poor prognosis of pancreatic cancer by enhancing
epithelial-mesenchymal transition-driven invasion. Med Oncol.
31:642014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu ZL, Wu J, Wang LX, Yang JF, Xiao GM,
Sun HP and Chen YJ: Knockdown of Upregulated Gene 11 (URG11)
Inhibits Proliferation, Invasion, and β-Catenin Expression in
Non-Small Cell Lung Cancer Cells. Oncol Res. 24:197–204. 2016.
View Article : Google Scholar
|
12
|
Pan B, Ye Y, Liu H, Zhen J, Zhou H, Li Y,
Qu L, Wu Y, Zeng C and Zhong W: URG11 regulates prostate cancer
cell proliferation, migration, and invasion. BioMed Res Int.
2018:40607282018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen Y, Tan W and Wang C: Tumor-associated
macrophage-derived cytokines enhance cancer stem-like
characteristics through epithelial-mesenchymal transition.
OncoTargets Ther. 11:3817–3826. 2018. View Article : Google Scholar
|
14
|
Yan L, Xu F and Dai CL: Relationship
between epithelial-to-mesenchymal transition and the inflammatory
microenvironment of hepatocellular carcinoma. J Exp Clin Cancer
Res. 37:2032018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brennen WN and Isaacs JT: Mesenchymal stem
cells and the embryonic reawakening theory of BPH. Nat Rev Urol.
15:703–715. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Usova EV, Kopantseva MR, Egorov VI,
Kopantzev EP and Sverdlov ED: SNAI1 and SNAI2 - transcriptional
master-regulators of epithelial-mesenchimal transition. Patol
Fiziol Eksp Ter. 59:76–87. 2015.In Russian. PubMed/NCBI
|
17
|
Sung CO, Park CK and Kim SH:
Classification of epithelial- mesenchymal transition phenotypes in
esophageal squamous cell carcinoma is strongly associated with
patient prognosis. Modern pathology: An official journal of the
United States and Canadian Academy of Pathology Inc. 24:1060–1068.
2011. View Article : Google Scholar
|
18
|
Inoue T, Umezawa A, Takenaka T, Suzuki H
and Okada H: The contribution of epithelial-mesenchymal transition
to renal fibrosis differs among kidney disease models. Kidney Int.
87:233–238. 2015. View Article : Google Scholar
|
19
|
Lim SH, Becker TM, Chua W, Ng WL, de Souza
P and Spring KJ: Circulating tumour cells and the epithelial
mesenchymal transition in colorectal cancer. J Clin Pathol.
67:848–853. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Giles RH, van Es JH and Clevers H: Caught
up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta.
1653:1–24. 2003.PubMed/NCBI
|
21
|
Rabbani SA, Arakelian A and Farookhi R:
LRP5 knockdown: Effect on prostate cancer invasion growth and
skeletal metastasis in vitro and in vivo. Cancer Med. 2:625–635.
2013.
|
22
|
Dai J, Hall CL, Escara-Wilke J, Mizokami
A, Keller JM and Keller ET: Prostate cancer induces bone metastasis
through Wnt-induced bone morphogenetic protein-dependent and
independent mechanisms. Cancer Res. 68:5785–5794. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: Globocan 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar
|
25
|
Chang L, Graham PH, Hao J, Bucci J, Cozzi
PJ, Kearsley JH and Li Y: Emerging roles of radioresistance in
prostate cancer metastasis and radiation therapy. Cancer Metastasis
Rev. 33:469–496. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Alberti C: Prostate cancer:
Radioresistance molecular target-related markers and foreseeable
modalities of radiosensitization. Eur Rev Med Pharmacol Sci.
18:2275–2282. 2014.PubMed/NCBI
|
27
|
Singh A and Settleman J: EMT, cancer stem
cells and drug resistance: An emerging axis of evil in the war on
cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bronsert P, Enderle-Ammour K, Bader M,
Timme S, Kuehs M, Csanadi A, Kayser G, Kohler I, Bausch D, Hoeppner
J, et al: Cancer cell invasion and EMT marker expression: A
three-dimensional study of the human cancer-host interface. J
Pathol. 234:410–422. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang G, Zhu F, Han G, Li Z, Yu Q, Li Z
and Li J: Silencing of URG11 expression inhibits the proliferation
and epithelial mesenchymal transition in benign prostatic
hyperplasia cells via the RhoA/ROCK1 pathway. Mol Med Rep.
18:391–398. 2018.PubMed/NCBI
|
30
|
Du R, Huang C, Bi Q, Zhai Y, Xia L, Liu J,
Sun S and Fan D: URG11 mediates hypoxia-induced
epithelial-to-mesenchymal transition by modulation of E-cadherin
and β-catenin. Biochem Biophys Res Commun. 391:135–141. 2010.
View Article : Google Scholar
|
31
|
Gupta A, Verma A, Mishra AK, Wadhwa G,
Sharma SK and Jain CK: The Wnt pathway: Emerging anticancer
strategies. Recent Pat Endocr Metab Immune Drug Discov. 7:138–147.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vallée A, Lecarpentier Y, Guillevin R and
Vallée JN: Thermodynamics in gliomas: Interactions between the
canonical WNT/beta-catenin pathway and PPAR gamma. Front Physiol.
8:3522017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin
J, Huang S and Meltzer SJ: Klotho: A tumor suppressor and modulator
of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab
Invest. 96:197–205. 2016. View Article : Google Scholar
|
34
|
Pandurangan AK, Divya T, Kumar K,
Dineshbabu V, Velavan B and Sudhandiran G: Colorectal
carcinogenesis: Insights into the cell death and signal
transduction pathways: A review. World J Gastrointest Oncol.
10:244–259. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li YL, Jin YF, Liu XX and Li HJ: A
comprehensive analysis of Wnt/β-catenin signaling pathway-related
genes and crosstalk pathways in the treatment of As2O3 in renal
cancer. Ren Fail. 40:331–339. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J,
Tang Z, Liao QX, Zhang H, Zeng LS and Cui SZ: LINC01133 as ceRNA
inhibits gastric cancer progression by sponging miR-106a-3p to
regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer.
17:1262018. View Article : Google Scholar
|
37
|
Adebayo Michael AO, Ko S, Tao J, Moghe A,
Yang H, Xu M, Russell JO, Pradhan-Sundd T, Liu S, Singh S, et al:
Inhibiting glutamine-dependent mTORC1 activation ameliorates Liver
cancers driven by β-catenin mutations. Cell Metab: Jan. 28:2019Epub
ahead of print.
|
38
|
Ren W, Wang D, Li C, Shu T, Zhang W and Fu
X: Capn4 expression is modulated by microRNA-520b and exerts an
oncogenic role in prostate cancer cells by promoting
Wnt/beta-catenin signaling. Biomed Pharmacother. 108:467–475. 2018.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Z, Cheng L, Li J, Farah E, Atallah
NM, Pascuzzi PE, Gupta S and Liu X: Inhibition of the Wnt/β-catenin
pathway overcomes resistance to enzalutamide in
castration-resistant prostate cancer. Cancer Res. 78:3147–3162.
2018.PubMed/NCBI
|
40
|
Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B,
Huang Y, Xia W and Xue W: PRKAR2B promotes prostate cancer
metastasis by activating Wnt/β-catenin and inducing
epithelial-mesenchymal transition. J Cell Biochem. 119:7319–7327.
2018. View Article : Google Scholar : PubMed/NCBI
|