Detection of N6‑methyladenosine modification residues (Review)
- Authors:
- Wei Zhu
- Jing‑Zi Wang
- Zhiqiang Xu
- Mengda Cao
- Qiaoli Hu
- Chen Pan
- Miao Guo
- Ji‑Fu Wei
- Haiwei Yang
-
Affiliations: Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210000, P.R. China - Published online on: April 18, 2019 https://doi.org/10.3892/ijmm.2019.4169
- Pages: 2267-2278
-
Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
He C: Grand challenge commentary: RNA epigenetics. Nat Chem Biol. 6:863–865. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meye KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
Adams JM and Cory S: Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 255:28–33. 1975. View Article : Google Scholar : PubMed/NCBI | |
Wei CM, Gershowitz A and Moss B: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI | |
Narayan P and Rottman FM: Methylation of mRNA. Adv Enzymol Relat Areas Mol Biol. 65:255–285. 1992.PubMed/NCBI | |
Dubin DT and Taylor RH: The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res. 2:1653–1668. 1975. View Article : Google Scholar : PubMed/NCBI | |
Haugland RA and Cline MG: Post-transcriptional modifications of oat coleoptile ribonucleic acids. 5′-Terminal capping and methylation of internal nucleosides in poly(A)-rich RNA. Eur J Biochem. 104:271–277. 1980. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Zhao X, Wu YS, Li MM, Wang XJ and Yang YG: N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics. 11:8–17. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ear J and Lin S: RNA methylation regulates hematopoietic stem and progenitor cell development. J Genet Genomics. 44:473–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI | |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP and Conrad NK: The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell. 169:824–835.e814. 2017. View Article : Google Scholar | |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Bio. 7:885–887. 2011. View Article : Google Scholar | |
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol cell. 49:18–29. 2013. View Article : Google Scholar : | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar | |
Theler D, Dominguez C, Blatter M, Boudet J and Allain FH: Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Res. 42:13911–13919. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S and Mason CE: The birth of the Epitranscriptome: Deciphering the function of RNA modifications. Genome Biol. 13:1752012. View Article : Google Scholar : PubMed/NCBI | |
Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M and Marx A: Engineering of a DNA polymerase for direct m6A sequencing. Angew Chem Int Ed Engl. 57:417–421. 2018. View Article : Google Scholar : | |
Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, Howard BD, Daneshvar K, Mullen AC, Dedon P, et al: m6A level and isoform characterization sequencing (m6A-LAICseq) reveals the census and complexity of the m6A epitranscriptome. Nat Methods. 13:692–698. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagarajan A, Janostiak R and Wajapeyee N: Dot blot analysis for measuring global N6-methyladenosine modification of RNA. Methods Mol Biol. 1870:263–271. 2019. View Article : Google Scholar | |
Arguello AE, DeLiberto AN and Kleiner RE: RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein-RNA interactome. J Am Chem Soc. 139:17249–17252. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Wang H, Jiang W, Zhou Y and Ai S: Electrochemical immunosensor for N6-methyladenosine detection in human cell lines based on biotin-streptavidin system and silver-SiO2 signal amplification. Biosens Bioelectron. 90:494–500. 2017. View Article : Google Scholar | |
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weng Li Z, Su H, Weng R, Zuo X, Li Z, Huang C, Nachtergaele H, Dong S, Hu LC, et al: FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell. 31:127–141. 2017. View Article : Google Scholar | |
Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M, Duester G and Zhao JC: N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci. 21:195–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Imanishi M, Tsuji S, Suda A and Futaki S: Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). 53:12930–12933. 2013. View Article : Google Scholar | |
Mishima E, Jinno D, Akiyama Y, Itoh K, Nankumo S, Shima H, Kikuchi K, Takeuchi Y, Elkordy A, Suzuki T, et al: Immuno-Northern blotting: Detection of RNA modifications by using antibodies against modified nucleosides. PLoS One. 10:e01437562015. View Article : Google Scholar : PubMed/NCBI | |
Mishima E and Abe T: Immuno-northern blotting: Detection of modified RNA using gel separation and antibodies to modified nucleosides. Methods Mol Biol. 1870:179–187. 2019. View Article : Google Scholar | |
Chen W, Feng P, Ding H and Lin H: Identifying N6-methyladenosine sites in the Arabidopsis thaliana transcrip-tome. Mol Genet Genomics. 291:2225–2229. 2016. View Article : Google Scholar : PubMed/NCBI | |
Golovina AY, Dzama MM, Petriukov KS, Zatsepin TS, Sergiev PV, Bogdanov AA and Dontsova OA: Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis. Nucleic Acids Res. 42:e27. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lopez CM, Lloyd AJ, Leonard K and Wilkinson MJ: Differential effect of three base modifications on DNA thermostability revealed by high resolution melting. Anal Chem. 84:7336–7342. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Parisien M, Dai Q, Zheng G, He C and Pan T: Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 19:1848–1856. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jacob R, Zander S and Gutschner T: The dark side of the epitranscriptome: Chemical modifications in long non-coding RNAs. Int J Mol Sci. 18:E23872017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhu P, Ma S, Song J, Bai J, Sun F and Yi C: Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 11:592–597. 2015. View Article : Google Scholar : PubMed/NCBI | |
Antanaviciute A, Baquero-Perez B, Watson CM, Harrison SM, Lascelles C, Crinnion L, Markham AF, Bonthron DT, Whitehouse A and Carr IM: M6aViewer: Software for the detection, analysis, and visualization of N6-methyladenosine peaks from m6A-seq/ME-RIP sequencing data. RNA. 23:1493–1501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Meng J, Zhang S, Chen Y and Huang Y: A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics. 32:i378-i3852016. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Lu Z, Liu H, Zhang L, Zhang S, Chen Y, Rao MK and Huang Y: A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 69:274–281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang H, Wei Z, Zhang S, Hua G, Zhang SW, Zhang L, Gao SJ, Meng J, Chen X and Huang Y: MeT-DB V2.0: Elucidating context-specific functions of N6-methyl-adenosine methyltran-scriptome. Nucleic Acids Res. 46:D281–D287. 2017. View Article : Google Scholar | |
Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Li Q and Xie Y: A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data. Quant Biol. 6:275–286. 2018. View Article : Google Scholar | |
Rana AP and Tuck MT: Analysis and in vitro localization of internal methylated adenine residues in dihydrofolate reductase mRNA. Nucleic Acids Res. 18:4803–4808. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC and Gehrke CW: DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 13:1399–1412. 1985. View Article : Google Scholar : PubMed/NCBI | |
Clancy MJ, Shambaugh ME, Timpte CS and Bokar JA: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: A potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30:4509–4518. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, et al: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24:1403–1419. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 552:126–131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang Li X, Huang J, Wang W, Li F, Qin P, Qin C, Zou Z, Wei Q, Hua JL, et al: The M6A methyltransferase METTL3: Acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 8:96103–96116. 2017.PubMed/NCBI | |
Miao Z, Xin N, Wei B, Hua X, Zhang G, Leng C, Zhao C, Wu D, Li J, Ge W, et al: 5-hydroxymethylcytosine is detected in RNA from mouse brain tissues. Brain Res. 1642:546–552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rona G, Scheer I, Nagy K, Pálinkás HL, Tihanyi G, Borsos M, Békési A and Vértessy BG: Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications. Nucleic Acids Res. 44:e282016. View Article : Google Scholar : | |
Wehr NB and Levine RL: Quantitation of protein carbonylation by dot blot. Anal Biochem. 423:241–245. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jaffrey SR and Kharas MG: Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. 9:22017. View Article : Google Scholar : | |
Kwok CT, Marshall AD, Rasko JE and Wong JJ: Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol. 10:392017. View Article : Google Scholar | |
Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 7:64527–64542. 2016.PubMed/NCBI | |
Inouye M: The discovery of mRNA interferases: Implication in bacterial physiology and application to biotechnology. J Cell Physiol. 209:670–676. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gerstberger S, Hafner M and Tuschl T: A census of human RNA-binding proteins. Nat Rev Genet. 15:829–845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, et al: HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 456:464–469. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dubinsky L, Krom BP and Meijler MM: Diazirine based photoaffinity labeling. Bioorg Med Chem. 20:554–570. 2012. View Article : Google Scholar | |
Kauer JC, Erickson-Viitanen S, Wolfe HR Jr and DeGrado WF: p-benzoyl-L-phenylalanine, a new photoreactive amino acid. Photolabeling of calmodulin with a synthetic calmodulin-binding peptide. J Biol Chem. 261:10695–10700. 1986.PubMed/NCBI | |
Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C and Xu Y: Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–1496. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C and Min J: Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. 10:927–929. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, Lu Z, Liu J, Chen K, Jia G, Bergelson J and He C: Unique features of the m6A methylome i. Arabidopsis thaliana Nat Commun. 5:56302014. View Article : Google Scholar | |
Piekna-Przybylska D, Decatur WA and Fournier MJ: The 3D rRNA modification maps database: With interactive tools for ribosome analysis. Nucleic Acids Res. 36:D178–D183. 2008. View Article : Google Scholar : | |
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)a promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Choe J, Du P, Triboulet R and Gregory RI: The m(6)a methyltransferase Mettl3 promotes translation in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19. 2018. View Article : Google Scholar | |
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng D, Wang F, Xu Y, Yu H and Zhang H: Expression of demethylase genes, fto and alkbh1, is associated with prognosis of gastric cancer. Dig Dis Sci. 2019. View Article : Google Scholar | |
Wang X, Li Z, Kong B, Song C, Cong J, Hou J and Wang S: Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 8:98918–98930. 2017.PubMed/NCBI | |
Zhou J, Wang J, Hong B, Ma K, Xie H, Li L, Zhang K, Zhou B, Cai L and Gong K: Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma-a retrospective study using TCGA database. Aging (Albany NY). 11:1633–1647. 2019. View Article : Google Scholar | |
Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar |