1
|
Jhamb T and Kramer JM: Molecular concepts
in the pathogenesis of ameloblastoma: Implications for
therapeutics. Exp Mol Pathol. 97:345–353. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wright JM and Vered M: Update from the 4th
edition of the world health organization classification of head and
neck tumours: Odontogenic and maxillofacial bone tumors. Head Neck
Pathol. 11:68–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sandra F, Hendarmin L, Kukita T, Nakao Y,
Nakamura N and Nakamura S: Ameloblastoma induces
osteoclastogenesis: A possible role of ameloblastoma in expanding
in the bone. Oral Oncol. 41:637–644. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ong'uti MN, Cruchley AT, Howells GL and
Williams DM: Ki-67 antigen in ameloblastomas: Correlation with
clinical and histological parameters in 54 cases from Kenya. Int J
Oral Maxillofac Surg. 26:376–379. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sandra F, Mitsuyasu T, Nakamura N,
Shiratsuchi Y and Ohishi M: Immunohistochemical evaluation of PCNA
and Ki-67 in ameloblastoma. Oral Oncol. 37:193–198. 2001.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sandra F, Nakamura N, Mitsuyasu T,
Shiratsuchi Y and Ohishi M: Two relatively distinct patterns of
ameloblastoma: An anti-apoptotic proliferating site in the outer
layer (periphery) and a pro-apoptotic differentiating site in the
inner layer (centre). Histopathology. 39:93–98. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Luo HY, Yu SF and Li TJ: Differential
expression of apoptosis-related proteins in various cellular
components of ameloblastomas. Int J Oral Maxillofac Surg.
35:750–755. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jiang C, Zhang Q, Shanti RM, Shi S, Chang
TH, Carrasco L, Alawi F and Le AD: Mesenchymal stromal cell-derived
interleukin-6 promotes epithelial-mesenchymal transition and
acquisition of epithelial stem-like cell properties in
ameloblastoma epithelial cells. Stem Cells. 35:2083–2094. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang L, Zeng D, Huang H, Wang J, Tao Q,
Pan C, Xu J, Zhang B and Wang A: Tissue inhibitor of
metalloproteinase-2 inhibits ameloblastoma growth in a new mouse
xenograft disease model. J Oral Pathol Med. 39:94–102. 2010.
View Article : Google Scholar
|
10
|
Zhang B, Zhang J, Huang HZ, Xu ZY and Xie
HL: Expression and role of metalloproteinase-2 and endogenous
tissue regulator in ameloblastoma. J Oral Pathol Med. 39:219–222.
2010. View Article : Google Scholar
|
11
|
Wang A, Zhang B, Huang H, Zhang L, Zeng D,
Tao Q, Wang J and Pan C: Suppression of local invasion of
ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro.
BMC Cancer. 8:1822008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Martin TJ: Manipulating the environment of
cancer cells in bone: A novel therapeutic approach. J Clin Invest.
110:1399–1401. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Herrero AB, García-Gómez A, Garayoa M,
Corchete LA, Hernández JM, San Miguel J and Gutierrez NC: Effects
of IL-8 Up-regulation on cell survival and osteoclastogenesis in
multiple myeloma. Am J Pathol. 186:2171–2182. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sottnik JL and Keller ET: Understanding
and targeting osteoclastic activity in prostate cancer bone
metastases. Curr Mol Med. 13:626–639. 2013. View Article : Google Scholar :
|
15
|
Kovacic N, Croucher PI and McDonald MM:
Signaling between tumor cells and the host bone marrow
microenvironment. Calcif Tissue Int. 94:125–139. 2014. View Article : Google Scholar
|
16
|
Mundy GR: Metastasis to bone: Causes,
consequences and therapeutic opportunities. Nat Rev Cancer.
2:584–593. 2002. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Azim H and Azim HA Jr: Targeting RANKL in
breast cancer: Bone metastasis and beyond. Expert Rev Anticancer
Ther. 13:195–201. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen G, Sircar K, Aprikian A, Potti A,
Goltzman D and Rabbani SA: Expression of RANKL/RANK/OPG in primary
and metastatic human prostate cancer as markers of disease stage
and functional regulation. Cancer. 107:289–298. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Croucher PI, Shipman CM, Lippitt J, Perry
M, Asosingh K, Hijzen A, Brabbs AC, van Beek EJ, Holen I, Skerry
TM, et al: Osteoprotegerin inhibits the development of osteolytic
bone disease in multiple myeloma. Blood. 98:3534–3540. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Sezer O, Heider U, Jakob C, Eucker J and
Possinger K: Human bone marrow myeloma cells express RANKL. J Clin
Oncol. 20:353–354. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Farrugia AN, Atkins GJ, To LB, Pan B,
Horvath N, Kostakis P, Findlay DM, Bardy P and Zannettino AC:
Receptor activator of nuclear factor-kappaB ligand expression by
human myeloma cells mediates osteoclast formation in vitro and
correlates with bone destruction in vivo. Cancer Res. 63:5438–5445.
2003.PubMed/NCBI
|
22
|
Giuliani N, Bataille R, Mancini C,
Lazzaretti M and Barillé S: Myeloma cells induce imbalance in the
osteoprotegerin/osteoprotegerin ligand system in the human bone
marrow environment. Blood. 98:3527–3533. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pearse RN, Sordillo EM, Yaccoby S, Wong
BR, Liau DF, Colman N, Michaeli J, Epstein J and Choi Y: Multiple
myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to
trigger bone destruction and promote tumor progression. Proc Natl
Acad Sci USA. 98:11581–11586. 2001. View Article : Google Scholar
|
24
|
Shipman CM and Croucher PI:
Osteoprotegerin is a soluble decoy receptor for tumor necrosis
factor-related apoptosis-inducing ligand/Apo2 ligand and can
function as a paracrine survival factor for human myeloma cells.
Cancer Res. 63:912–916. 2003.PubMed/NCBI
|
25
|
Vallet S, Mukherjee S, Vaghela N,
Hideshima T, Fulciniti M, Pozzi S, Santo L, Cirstea D, Patel K,
Sohani AR, et al: Activin a promotes multiple myeloma-induced
osteolysis and is a promising target for myeloma bone disease. Proc
Natl Acad Sci USA. 107:5124–5129. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Renema N, Navet B, Heymann MF, Lezot F and
Heymann D: RANK-RANKL signalling in cancer. Biosci Rep. 36:pii:
e003662016. View Article : Google Scholar
|
27
|
Chikatsu N, Takeuchi Y, Tamura Y, Fukumoto
S, Yano K, Tsuda E, Ogata E and Fujita T: Interactions between
cancer and bone marrow cells induce osteoclast differentiation
factor expression and osteoclast-like cell formation in vitro.
Biochem Biophys Res Commun. 267:632–637. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sisay M, Mengistu G and Edessa D: The
RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer
stem cell: Potential targets for anticancer therapy. Onco Targets
Ther. 10:3801–3810. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wada T, Nakashima T, Hiroshi N and
Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone
disease. Trends Mol Med. 12:17–25. 2006. View Article : Google Scholar
|
30
|
Fuchigami T, Kibe T, Koyama H, Kishida S,
Iijima M, Nishizawa Y, Hijioka H, Fujii T, Ueda M, Nakamura N, et
al: Regulation of IL-6 and IL-8 production by reciprocal
cell-to-cell interactions between tumor cells and stromal
fibroblasts through IL-1α in ameloblastoma. Biochem Biophys Res
Commun. 451:491–496. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tao Q, Lv B, Qiao B, Zheng CQ and Chen ZF:
Immortalization of ameloblastoma cells via reactivation of
telomerase function: Phenotypic and molecular characteristics. Oral
Oncol. 45:e239–e244. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wani MR, Fuller K, Kim NS, Choi Y and
Chambers T: Prostaglandin E2 cooperates with TRANCE in osteoclast
induction from hemopoietic precursors: Synergistic activation of
differentiation, cell spreading, and fusion. Endocrinology.
140:1927–1935. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fuller K, Bayley KE and Chambers TJ:
Activin A is an essential cofactor for osteoclast induction.
Biochem Biophys Res Commun. 268:2–7. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ohta K, Naruse T, Ishida Y, Shigeishi H,
Nakagawa T, Fukui A, Nishi H, Sasaki K, Ogawa I and Takechi M:
TNF-α-induced IL-6 and MMP-9 expression in immortalized
ameloblastoma cell line established by hTERT. Oral Dis. 23:199–209.
2017. View Article : Google Scholar
|
35
|
Kline M, Donovan K, Wellik L, Lust C, Jin
W, Moon-Tasson L, Xiong Y, Witzig TE, Kumar S, Rajkumar SV and Lust
JA: Cytokine and chemokine profiles in multiple myeloma;
signifi-cance of stromal interaction and correlation of IL-8
production with disease progression. Leuk Res. 31:591–598. 2007.
View Article : Google Scholar
|
36
|
Bendre MS, Margulies AG, Walser B, Akel
NS, Bhattacharrya S, Skinner RA, Swain F, Ramani V, Mohammad KS,
Wessner LL, et al: Tumor-derived interleukin-8 stimulates
osteolysis independent of the receptor activator of nuclear
factor-kappaB ligand pathway. Cancer Res. 65:11001–11009. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bendre MS, Montague DC, Peery T, Akel NS,
Gaddy D and Suva LJ: Interleukin-8 stimulation of
osteoclastogenesis and bone resorption is a mechanism for the
increased osteolysis of metastatic bone disease. Bone. 33:28–37.
2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tanimoto K, Yoshida E, Mita S, Nibu Y,
Murakami K and Fukamizu A: Human activin betaA gene. Identification
of novel 5′ exon, functional promoter, and enhancers. J Biol Chem.
271:32760–32769. 1996. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lacey DL, Timms E, Tan HL, Kelley MJ,
Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S,
et al: Osteoprotegerin ligand is a cytokine that regulates
osteoclast differentiation and activation. Cell. 93:165–176. 1998.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Yoshimoto S, Morita H, Matsubara R,
Mitsuyasu T, Imai Y, Kajioka S, Yoneda M, Ito Y, Hirofuji T,
Nakamura S and Hirata M: Surface vacuolar ATPase in ameloblastoma
contributes to tumor invasion of the jaw bone. Int J Oncol.
48:1258–1270. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Suva LJ, Washam C, Nicholas RW and Griffin
RJ: Bone metastasis: Mechanisms and therapeutic opportunities. Nat
Rev Endocrinol. 7:208–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yoshimura T, Matsushima K, Tanaka S,
Robinson EA, Appella E, Oppenheim JJ and Leonard EJ: Purification
of a human monocyte-derived neutrophil chemotactic factor that has
peptide sequence similarity to other host defense cytokines. Proc
Natl Acad Sci USA. 84:9233–9237. 1987. View Article : Google Scholar : PubMed/NCBI
|
43
|
Waugh DJ and Wilson C: The interleukin-8
pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim SJ, Uehara H, Karashima T, McCarty M,
Shih N and Fidler IJ: Expression of interleukin-8 correlates with
angiogenesis, tumorigenicity, and metastasis of human prostate
cancer cells implanted orthotopically in nude mice. Neoplasia.
3:33–42. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hwang YS, Lee SK, Park KK and Chung WY:
Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated
oral squamous cell carcinoma promotes osteoclastogenesis and bone
resorption. Oral Oncol. 48:40–48. 2012. View Article : Google Scholar
|
46
|
Baud V and Karin M: Signal transduction by
tumor necrosis factor and its relatives. Trends Cell Biol.
11:372–377. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
da Silva TA, Batista AC, Mendonca EF,
Leles CR, Fukada S and Cunha FQ: Comparative expression of RANK,
RANKL, and OPG in keratocystic odontogenic tumors, ameloblastomas,
and dentigerous cysts. Oral Surg Oral Med Oral Pathol Oral Radiol
Endod. 105:333–341. 2008. View Article : Google Scholar
|
48
|
Siar CH, Tsujigiwa H, Ishak I, Hussin NM,
Nagatsuka H and Ng KH: RANK, RANKL, and OPG in recurrent
solid/multicystic amelo-blastoma: Their distribution patterns and
biologic significance. Oral Surg Oral Med Oral Pathol Oral Radiol.
119:83–91. 2015. View Article : Google Scholar
|
49
|
Vale W, Rivier J, Vaughan J, McClintock R,
Corrigan A, Woo W, Karr D and Spiess J: Purification and
characterization of an FSH releasing protein from porcine ovarian
follicular fluid. Nature. 321:776–779. 1986. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xia Y and Schneyer AL: The biology of
activin: Recent advances in structure, regulation and function. J
Endocrinol. 202:1–12. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen YG, Lui HM, Lin SL, Lee JM and Ying
SY: Regulation of cell proliferation, apoptosis, and carcinogenesis
by activin. Exp Biol Med (Maywood). 227:75–87. 2002. View Article : Google Scholar
|
52
|
Chen YG, Wang Q, Lin SL, Chang CD, Chuang
J and Ying SY: Activin signaling and its role in regulation of cell
proliferation, apoptosis, and carcinogenesis. Exp Biol Med
(Maywood). 231:534–544. 2006. View Article : Google Scholar
|
53
|
Nicks KM, Perrien DS, Akel NS, Suva LJ and
Gaddy D: Regulation of osteoblastogenesis and osteoclastogenesis by
the other reproductive hormones, activin and inhibin. Mol Cell
Endocrinol. 310:11–20. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kajita T, Ariyoshi W, Okinaga T, Mitsugi
S, Tominaga K and Nishihara T: Mechanisms involved in enhancement
of osteoclast formation by activin-A. J Cell Biochem.
119:6974–6985. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Snider JL, Allison C, Bellaire BH, Ferrero
RL and Cardelli JA: The beta1 integrin activates JNK independent of
CagA, and JNK activation is required for Helicobacter pylori
CagA+-induced motility of gastric cancer cells. J Biol
Chem. 283:13952–13963. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ohshiba T, Miyaura C, Inada M and Ito A:
Role of RANKL-induced osteoclast formation and MMP-dependent matrix
degradation in bone destruction by breast cancer metastasis. Br J
Cancer. 88:1318–1326. 2003. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zheng Y, Chow SO, Boernert K, Basel D,
Mikuscheva A, Kim S, Fong-Yee C, Trivedi T, Buttgereit F,
Sutherland RL, et al: Direct crosstalk between cancer and
osteoblast lineage cells fuels metastatic growth in bone via
auto-amplification of IL-6 and RANKL signaling pathways. J Bone
Miner Res. 29:1938–1949. 2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Bussard KM, Venzon DJ and Mastro AM:
Osteoblasts are a major source of inflammatory cytokines in the
tumor microenvironment of bone metastatic breast cancer. J Cell
Biochem. 111:1138–1148. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Sohara Y, Shimada H, Minkin C,
Erdreich-Epstein A, Nolta JA and DeClerck YA: Bone marrow
mesenchymal stem cells provide an alternate pathway of osteoclast
activation and bone destruction by cancer cells. Cancer Res.
65:1129–1135. 2005. View Article : Google Scholar : PubMed/NCBI
|
60
|
Qian Y and Huang HZ: The role of RANKL and
MMP-9 in the bone resorption caused by ameloblastoma. J Oral Pathol
Med. 39:592–598. 2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Guénet JL: The mouse genome. Genome Res.
15:1729–1740. 2005. View Article : Google Scholar : PubMed/NCBI
|
62
|
Cilvik SN, Wang JI, Lavine KJ, Uchida K,
Castro A, Gierasch CM, Weinheimer CJ, House SL, Kovacs A, Nichols
CG and Ornitz DM: Fibroblast growth factor receptor 1 signaling in
adult cardiomyocytes increases contractility and results in a
hypertrophic cardiomyopathy. PLoS One. 8:e829792013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Sunagar K, Fry BG, Jackson TN, Casewell
NR, Undheim EA, Vidal N, Ali SA, King GF, Vasudevan K, Vasconcelos
V and Antunes A: Molecular evolution of vertebrate neurotrophins:
Co-option of the highly conserved nerve growth factor gene into the
advanced snake venom arsenalf. PLoS One. 8:e818272013. View Article : Google Scholar : PubMed/NCBI
|
64
|
Shen J, Li S and Chen D: TGF- β signaling
and the development of osteoarthritis. Bone Res. 2:pii: 140022014.
View Article : Google Scholar
|