1
|
Trompier D, Vejux A, Zarrouk A, Gondcaille
C, Geillon F, Nury T, Savary S and Lizard G: Brain peroxisomes.
Biochimie. 98:102–110. 2014. View Article : Google Scholar
|
2
|
Wanders RJ and Waterham HR: Biochemistry
of mammalian peroxisomes revisited. Annu Rev Biochem. 75:295–332.
2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mosser J, Douar AM, Sarde CO, Kioschis P,
Feil R, Moser H, Poustka AM, Mandel JL and Aubourg P: Putative
X-linked adrenoleukodystrophy gene shares unexpected homology with
ABC transporters. Nature. 361:726–730. 1993. View Article : Google Scholar : PubMed/NCBI
|
4
|
Eichler F and Van Haren K: Immune response
in leukodystrophies. Pediatr Neurol. 37:235–244. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
van der Voorn JP, Pouwels PJ, Powers JM,
Kamphorst W, Martin JJ, Troost D and Spreeuwenberg MD: Correlating
quantitative MR imaging with histopathology in X-linked
adrenoleukodystrophy. AJNR Am J Neuroradiol. 32:481–489. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Eichler FS, Ren JQ, Cossoy M, Rietsch AM,
Nagpal S, Moser AB, Frosch MP and Ransohoff RM: Is microglial
apoptosis an early pathogenic change in cerebral X-linked
adrenoleukodystrophy? Ann Neurol. 63:729–742. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Musolino PL, Rapalino O, Caruso P,
Caviness VS and Eichler FS: Hypoperfusion predicts lesion
progression in cerebral X-linked adrenoleukodystrophy. Brain.
135:2676–2683. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Berger J, Dorninger F, Forss-Petter S and
Kunze M: Peroxisomes in brain development and function. Biochim
Biophys Acta. 1863:934–955. 2016. View Article : Google Scholar :
|
9
|
Verheijden S, Beckers L, De Munter S, Van
Veldhoven PP and Baes M: Central nervous system pathology in MFP2
deficiency: Insights from general and conditional knockout mouse
models. Biochimie. 98:119–126. 2014. View Article : Google Scholar
|
10
|
Ferdinandusse S, Denis S, Mooyer PA,
Dekker C, Duran M, Soorani-Lunsing RJ, Boltshauser E, Macaya A,
Gärtner J, Majoie CB, et al: Clinical and biochemical spectrum of
D-bifunctional protein deficiency. Ann Neurol. 59:92–104. 2006.
View Article : Google Scholar
|
11
|
Zhang W, Huang Q, Zeng Z, Wu J, Zhang Y
and Chen Z: Sirt1 inhibits oxidative stress in vascular endothelial
cells. Oxid Med Cell Longev. 2017:75439732017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang H, Zhang W, Pan H, Feldser HG, Lainez
E, Miller C, Leung S, Zhong Z, Zhao H, Sweitzer S, et al: SIRT1
activators suppress inflammatory responses through promotion of p65
deacetylation and inhibition of NF-κB activity. PLoS One. 7:pp.
e463642012, View Article : Google Scholar
|
13
|
Rubin LL and Staddon JM: The cell biology
of the blood-brain barrier. Annu Rev Neurosci. 22:11–28. 1999.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ueno M: Molecular anatomy of the brain
endothelial barrier: An overview of the distributional features.
Curr Med Chem. 14:1199–1206. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pardridge WM: Blood-brain barrier
delivery. Drug Discov Today. 12:54–61. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bordone L and Guarente L: Calorie
restriction, SIRT1 and metabolism: Understanding longevity. Nat Rev
Mol Cell Biol. 6:298–305. 2005. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Morató L, Ruiz M, Boada J, Calingasan NY,
Galino J, Guilera C, Jové M, Naudí A, Ferrer I, Pamplona R, et al:
Activation of sirtuin 1 as therapy for the peroxisomal disease
adrenoleukodystrophy. Cell Death Differ. 22:1742–1753. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Stamatovic SM, Martinez-Revollar G, Hu A,
Choi J, Keep RF and Andjelkovic AV: Decline in Sirtuin-1 expression
and activity plays a critical role in blood-brain barrier
permeability in aging. Neurobiol Dis. 126:105–116. 2019. View Article : Google Scholar
|
19
|
Orimo M, Minamino T, Miyauchi H, Tateno K,
Okada S, Moriya J and Komuro I: Protective role of SIRT1 in
diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol.
29:889–894. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng
W, Liu G, Wei YS, Cai H, Liu DP and Liang CC: Endothelium-specific
overexpression of class III deacetylase SIRT1 decreases
atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res.
80:191–199. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vassallo PF, Simoncini S, Ligi I, Chateau
AL, Bachelier R, Robert S, Morere J, Fernandez S, Guillet B,
Marcelli M, et al: Accelerated senescence of cord blood endothelial
progenitor cells in premature neonates is driven by SIRT1 decreased
expression. Blood. 123:2116–2126. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim D, Nguyen MD, Dobbin MM, Fischer A,
Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, et
al: SIRT1 deacetylase protects against neurodegeneration in models
for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.
26:3169–3179. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Donmez G and Outeiro TF: SIRT1 and SIRT2:
Emerging targets in neurodegeneration. EMBO Mol Med. 5:344–352.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Zhang X, Chen J, Sun L and Xu Y: SIRT1
deacetylates KLF4 to activate Claudin-5 transcription in ovarian
cancer cells. J Cell Biochem. 119:2418–2426. 2018. View Article : Google Scholar
|
26
|
Obermeier B, Daneman R and Ransohoff RM:
Development, maintenance and disruption of the blood-brain barrier.
Nat Med. 19:1584–1596. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wekerle H, Schwab M, Linington C and
Meyermann R: Antigen presentation in the peripheral nervous system:
Schwann cells present endogenous myelin autoantigens to
lymphocytes. Eur J Immunol. 16:1551–1557. 1986. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cross AH, Dolich S and Raine CS: Antigen
processing of myelin basic protein is required prior to recognition
by T cells inducing EAE. Cell Immunol. 129:22–31. 1990. View Article : Google Scholar : PubMed/NCBI
|
29
|
Raine CS, Cannella B, Duijvestijn AM and
Cross AH: Homing to central nervous system vasculature by
antigen-specific lymphocytes. II Lymphocyte/endothelial cell
adhesion during the initial stages of autoimmune demyelination Lab
Invest. 63:476–489. 1990.
|
30
|
Zlokovic BV: The blood-brain barrier in
health and chronic neurodegenerative disorders. Neuron. 57:178–201.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wilson EH, Weninger W and Hunter CA:
Trafficking of immune cells in the central nervous system. J Clin
Invest. 120:1368–1379. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Man S, Ubogu EE, Williams KA, Tucky B,
Callahan MK and Ransohoff RM: Human brain microvascular endothelial
cells and umbilical vein endothelial cells differentially
facilitate leukocyte recruitment and utilize chemokines for T cell
migration. Clin Dev Immunol. 2008:3849822008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Miller DW: Immunobiology of the
blood-brain barrier. J Neurovirol. 5:570–578. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Minagar A and Alexander JS: Blood-brain
barrier disruption in multiple sclerosis. Mult Scler. 9:540–549.
2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Droogan AG, McMillan SA, Douglas JP and
Hawkins SA: Serum and cerebrospinal fluid levels of soluble
adhesion molecules in multiple sclerosis: Predominant intrathecal
release of vascular cell adhesion molecule-1. J Neuroimmunol.
64:185–191. 1996. View Article : Google Scholar : PubMed/NCBI
|
36
|
Plumb J, McQuaid S, Mirakhur M and Kirk J:
Abnormal endothelial tight junctions in active lesions and
normal-appearing white matter in multiple sclerosis. Brain Pathol.
12:154–169. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Calabrese V, Cornelius C, Dinkova-Kostova
AT, Calabrese EJ and Mattson MP: Cellular stress responses, the
hormesis paradigm, and vitagenes: Novel targets for therapeutic
intervention in neurodegenerative disorders. Antioxid Redox Signal.
13:1763–1811. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Di Domenico F, Perluigi M, Butterfield DA,
Cornelius C and Calabrese V: Oxidative damage in rat brain during
aging: Interplay between energy and metabolic key target proteins.
Neurochem Res. 35:2184–2192. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Leuner K, Hauptmann S, Abdel-Kader R,
Scherping I, Keil U, Strosznajder JB, Eckert A and Müller WE:
Mitochondrial dysfunction: The first domino in brain aging and
Alzheimer's disease? Antioxid Redox Signal. 9:1659–1675. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Martinez A, Portero-Otin M, Pamplona R and
Ferrer I: Protein targets of oxidative damage in human
neurodegenerative diseases with abnormal protein aggregates. Brain
Pathol. 20:281–297. 2010. View Article : Google Scholar
|
41
|
Galino J, Ruiz M, Fourcade S, Schlüter A,
López-Erauskin J, Guilera C, Jove M, Naudi A, García-Arumí E,
Andreu AL, et al: Oxidative damage compromises energy metabolism in
the axonal degeneration mouse model of X-adrenoleukodystrophy.
Antioxid Redox Signal. 15:2095–2107. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schlüter A, Espinosa L, Fourcade S, Galino
J, López E, Ilieva E, Morató L, Asheuer M, Cook T, McLaren A, et
al: Functional genomic analysis unravels a metabolic-inflammatory
interplay in adrenoleukodystrophy. Hum Mol Genet. 21:1062–1077.
2012. View Article : Google Scholar :
|
43
|
Fourcade S, López-Erauskin J, Galino J,
Duval C, Naudi A, Jove M, Kemp S, Villarroya F, Ferrer I, Pamplona
R, et al: Early oxidative damage underlying neurodegeneration in
X-adrenoleukodystrophy. Hum Mol Genet. 17:1762–1773. 2008.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ferdinandusse S, Finckh B, de Hingh YC,
Stroomer LE, Denis S, Kohlschütter A and Wanders RJ: Evidence for
increased oxidative stress in peroxisomal D-bifunctional protein
deficiency. Mol Genet Metab. 79:281–287. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jia Y, Gao P, Chen H, Wan Y, Zhang R,
Zhang Z, Yang R, Wang X, Xu J and Liu D: SIRT1 suppresses PMA and
ionomycin-induced ICAM-1 expression in endothelial cells. Sci China
Life Sci. 56:19–25. 2013. View Article : Google Scholar
|
46
|
Melotti P, Nicolis E, Tamanini A, Rolfini
R, Pavirani A and Cabrini G: Activation of NF-kB mediates ICAM-1
induction in respiratory cells exposed to an adenovirus-derived
vector. Gene Ther. 8:1436–1442. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ledebur HC and Parks TP: Transcriptional
regulation of the inter-cellular adhesion molecule-1 gene by
inflammatory cytokines in human endothelial cells. Essential roles
of a variant NF-kappa B site and p65 homodimers. J Biol Chem.
270:933–943. 1995. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ma Y, Xu C, Wang W, Sun L, Yang S, Lu D,
Liu Y and Yang H: Role of SIRT1 in the protection of intestinal
epithelial barrier under hypoxia and its mechanism. Zhonghua Wei
Chang Wai Ke Za Zhi. 17:602–606. 2014.In Chinese. PubMed/NCBI
|
49
|
Ma J, Wang P, Liu Y, Zhao L, Li Z and Xue
Y: Krüppel-like factor 4 regulates blood-tumor barrier permeability
via ZO-1, occludin and claudin-5. J Cell Physiol. 229:916–926.
2014. View Article : Google Scholar
|
50
|
Liu CW, Sung HC, Lin SR, Wu CW, Lee CW,
Lee IT, Yang YF, Yu IS, Lin SW, Chiang MH, et al: Resveratrol
attenuates ICAM-1 expression and monocyte adhesiveness to
TNF-α-treated endothelial cells: Evidence for an anti-inflammatory
cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway. Sci
Rep. 7:446892017. View Article : Google Scholar
|
51
|
Kaisar MA, Prasad S and Cucullo L:
Protecting the BBB endothelium against cigarette smoke-induced
oxidative stress using popular antioxidants: Are they really
beneficial? Brain Res. 1627:90–100. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Schwager J, Richard N, Widmer F and
Raederstorff D: Resveratrol distinctively modulates the
inflammatory profiles of immune and endothelial cells. BMC
Complement Altern Med. 17:3092017. View Article : Google Scholar : PubMed/NCBI
|