1
|
Wang HH, Garruti G, Liu M, Portincasa P
and Wang DQ: Cholesterol and lipoprotein metabolism and
atherosclerosis: Recent advances in reverse cholesterol transport.
Ann Hepatol. 16(Suppl 1: S3-S105): pp. S27–S42. 2017, View Article : Google Scholar : PubMed/NCBI
|
2
|
Adorni MP, Cipollari E, Favari E, Zanotti
I, Zimetti F, Corsini A, Ricci C, Bernini F and Ferri N: Inhibitory
effect of PCSK9 on Abca1 protein expression and cholesterol efflux
in macrophages. Atherosclerosis. 256:1–6. 2017. View Article : Google Scholar
|
3
|
Chávez-Sánchez L, Garza-Reyes MG,
Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV and
Blanco-Favela F: The role of TLR2, TLR4 and CD36 in macrophage
activation and foam cell formation in response to oxLDL in humans.
Hum Immunol. 75:322–329. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ding Z, Liu S, Wang X, Theus S, Deng X,
Fan Y, Zhou S and Mehta JL: PCSK9 regulates expression of scavenger
receptors and ox-LDL uptake in macrophages. Cardiovasc Res.
114:1145–1153. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
He XW, Yu D, Li WL, Zheng Z, Lv CL, Li C,
Liu P, Xu CQ, Hu XF and Jin XP: Anti-atherosclerotic potential of
baicalin mediated by promoting cholesterol efflux from macrophages
via the PPARγ-LXRα-ABCA1/ABCG1 pathway. Biomed Pharmacother.
83:257–264. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lara-Guzman OJ, Tabares-Guevara JH,
Leon-Varela YM, Álvarez RM, Roldan M, Sierra JA, Londoño-Londoño JA
and Ramirez-Pineda JR: Proatherogenic macrophage activities are
targeted by the flavonoid quercetin. J Pharmacol Exp Ther.
343:296–306. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li S, Cao H, Shen D, Jia Q, Chen C and
Xing S: Quercetin protects against ox-LDL-induced injury via
regulation of ABCAl, LXR-α and PCSK9 in RAW264.7 macrophages. Mol
Med Rep. 18:799–806. 2018.PubMed/NCBI
|
8
|
Lee SM, Moon J, Cho Y, Chung JH and Shin
MJ: Quercetin up-regulates expressions of peroxisome
proliferator-activated receptor γ, liver X receptorα, and ATP
binding cassette transporter A1 genes and increases cholesterol
efflux in human macrophage cell line. Nutr Res. 33:136–143. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang JM and Chen ML: Medical Laboratory
Zoology. China Press of Traditional Chinese Medicine; Beijing: pp.
276–278. pp. 2862012
|
10
|
Yue P, Chen Z, Nassir F, Bernal-Mizrachi
C, Finck B, Azhar S and Abumrad NA: Enhanced hepatic apoA-I
secretion and peripheral efflux of cholesterol and phospholipid in
CD36 null mice. PLoS One. 5:e99062010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Majdalawieh A and Ro HS: PPARgamma1 and
LXRalpha face a new regulator of macrophage cholesterol homeostasis
and inflammatory responsiveness, AEBP1. Nucl Recept Signal.
8:e0042010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Breslow JL: Mouse models of
atherosclerosis. Science. 272:685–688. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Martens FM, Rabelink TJ, op 't Roodt J, de
Koning EJ and Visseren FL: TNF-alpha induces endothelial
dysfunction in diabetic adults, an effect reversible by the
PPAR-gamma agonist pioglitazone. Eur Heart J. 27:1605–1609. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Frisdal E, Lesnik P, Olivier M, Robillard
P, Chapman MJ, Huby T, Guerin M and Le GW: Interleukin-6 protects
human macrophages from cellular cholesterol accumulation and
attenuates the proinflammatory response. J Biol Chem.
286:30926–30936. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Terkeltaub RA: IL-10: An 'immunologic
scalpel' for atherosclerosis? Arterioscler Thromb Vasc Biol.
19:2823–2825. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lan H, Pang L, Smith MM, Levitan D, Ding
W, Liu L, Shan LX, Shah VV, Laverty M, Arreaza G, et al: Proprotein
convertase subtilisin/kexin type 9 (PCSK9) affects gene expression
pathways beyond cholesterol metabolism in liver cells. J Cell
Physiol. 224:273–281. 2010.PubMed/NCBI
|
17
|
Herbert B, Patel D, Waddington SN, Eden
ER, McAleenan A, Sun XM and Soutar AK: Increased secretion of
lipoproteins in transgenic mice expressing human D374Y PCSK9 under
physiological genetic control. Arterioscler Thromb Vasc Biol.
30:1333–1339. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jänis MT, Tarasov K, Ta HX, Suoniemi M,
Ekroos K, Hurme R, Lehtimäki T, Päivä H, Kleber ME, März W, et al:
Beyond LDL-C lowering: Distinct molecular sphingolipids are good
indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9)
deficiency. Atherosclerosis. 228:380–385. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Silverstein RL and Febbraio M: CD36, a
scavenger receptor involved in immunity, metabolism, angiogenesis,
and behavior. Sci Signal. 2:pp. re32009, View Article : Google Scholar : PubMed/NCBI
|
20
|
Yazgan B, Ustunsoy S, Karademir B and
Kartal ON: CD36 as a biomarker of atherosclerosis. Free Radic Biol
Med. 75(Suppl 1): pp. S102014, View Article : Google Scholar
|
21
|
Febbraio M, Guy E and Silverstein RL: Stem
cell transplantation reveals that absence of macrophage CD36 is
protective against atherosclerosis. Arterioscler Thromb Vasc Biol.
24:2333–2338. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tang ZH, Chun-Yan WU, Xie M, Liu LS and
Jiang ZS: Effects of PCSK9 siRNA on CD36, SR-A1 and SR-B1
expression in THP-1 derived macrophages. Acta Univ Med Nanjing (Nat
Sci). 31:pp. 673–678. 2011
|
23
|
Zhao L, Varghese Z, Moorhead JF, Chen Y
and Ruan XZ: CD36 and lipid metabolism in the evolution of
atherosclerosis. Br Med Bull. 126:101–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ikhlef S, Berrougui H, Kamtchueng SO and
Khalil A: Paraoxonase 1-treated oxLDL promotes cholesterol efflux
from macrophages by stimulating the PPARgamma-LXRalpha-ABCA1
pathway. FEBS Lett. 590:1614–1629. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Larrede S, Quinn CM, Jessup W, Frisdal E,
Olivier M, Hsieh V, Kim MJ, Van Eck M, Couvert P, Carrie A, et al:
Stimulation of cholesterol efflux by LXR agonists in
cholesterol-loaded human macrophages is ABCA1-dependent but
ABCG1-independent. Arterioscler Thromb Vasc Biol. 29:1930–1936.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhong Q, Zhao S, Yu B, Wang X, Matyal R,
Li Y and Jiang Z: High-density lipoprotein increases the uptake of
oxidized low density lipoprotein via PPARγ/CD36 pathway in
inflammatory adipocytes. Int J Biol Sci. 11:256–265. 2015.
View Article : Google Scholar :
|
27
|
Kong LL, Cui QJ and Yi HX: Measurement of
quercetin, kaempferide, and isorhamnetin content in Semen Cuscutae
by HPLC. Chin Tradit Herbal Drugs. 35:112–113. 2004.In Chinese.
|
28
|
Lv L, Zhu YM and Xu DM: Study on flavones
from Taxillus chinensis (DC.) Danser and assay of its quercetin.
Chinese Traditional Patent Medicine. 26:1046–1048. 2004.
|
29
|
Han JJ, Hao J, Kim CH, Hong JS, Ahn HY and
Lee YS: Quercetin prevents cardiac hypertrophy induced by pressure
overload in rats. J Vet Med Sci. 71:737–743. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Juźwiak S, Wójcicki J, Mokrzycki K,
Marchlewicz M, Białecka M, Wenda-Rózewicka L, Gawrońska-Szklarz B
and Droździk M: Effect of quercetin on experimental hyperlipidemia
and atherosclerosis in rabbits. Pharmacol Rep. 57:604–609.
2015.
|
31
|
Bhaskar S, Sudhakaran PR and Helen A:
Quercetin attenuates atherosclerotic inflammation and adhesion
molecule expression by modulating TLR-NF-κB signaling pathway. Cell
Immunol. 310:131–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lu XL, Zhao CH, Yao XL and Zhang H:
Quercetin attenuates high fructose feeding-induced atherosclerosis
by suppressing inflammation and apoptosis via ROS-regulated
PI3K/AKT signaling pathway. Biomed Pharmacother. 85:658–671. 2017.
View Article : Google Scholar
|
33
|
Chen M: Effect of quercetin on
ox-LDL-induced lipid accumulation and peroxidation in mouse
macrophages. Chin J Pathophysiol. 29:1370–1374. 2013.In
Chinese.
|
34
|
Sun L, Li E, Wang F, Wang T, Qin Z, Niu S
and Qiu C: Quercetin increases macrophage cholesterol efflux to
inhibit foam cell formation through activating PPARγ-ABCA1 pathway.
Int J Clin Exp Pathol. 8:10854–10860. 2015.
|
35
|
Ren K, Jiang T and Zhao GJ: Quercetin
induces the selective uptake of HDL-cholesterol via promoting SR-BI
expression and the activation of the PPARγ/LXRα pathway. Food
Funct. 9:624–635. 2018. View Article : Google Scholar : PubMed/NCBI
|