1
|
Tsuda M, Shigemoto-Mogami Y, Koizumi S,
Mizokoshi A, Kohsaka S, Salter MW and Inoue K: P2X4 receptors
induced in spinal microglia gate tactile allodynia after nerve
injury. Nature. 424:778–783. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Coull JA, Beggs S, Boudreau D, Boivin D,
Tsuda M, Inoue K, Gravel C, Salter MW and De Koninck Y: BDNF from
microglia causes the shift in neuronal anion gradient underlying
neuropathic pain. Nature. 483:1017–1021. 2005. View Article : Google Scholar
|
3
|
Hayashi Y, Kawaji K, Sun L, Zhang X,
Koyano K, Yokoyama T, Kohsaka S, Inoue K and Nakanishi H:
Microglial Ca(2+)-activated K(+) channels are possible molecular
targets for the analgesic effects of S-ketamine on neuropathic
pain. J Neurosci. 31:17370–17382. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kawasaki Y, Zhang L, Cheng JK and Ji RR:
Cytokine mechanisms of central sensitization: Distinct and
overlapping role of interleukin-1beta, interleukin-6, and tumor
necrosis factor-alpha in regulating synaptic and neuronal activity
in the superficial spinal cord. J Neurosci. 28:5189–5194. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Masuda T, Tsuda M, Yoshinaga R,
Tozaki-Saitoh H, Ozato K, Tamura T and Inoue K: IRF8 is a critical
transcription factor for transforming microglia into a reactive
phenotype. Cell Rep. 1:334–340. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Salkoff L, Butler A, Ferreira G, Santi C
and Wei A: High-conductance potassium channels of the SLO family.
Nat Rev Neurosci. 7:921–931. 2006. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Ferrini F, Trang T, Mattioli TA, Laffray
S, Del'Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin
AG, et al: Morphine hyperalgesia gated through microglia-mediated
disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 16:183–192.
2013. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Hayashi Y, Morinaga S, Zhang J, Satoh Y,
Meredith AL, Nakata T, Wu Z, Kohsaka S, Inoue K and Nakanishi H: BK
channels in microglia are required for morphine-induced
hyperalgesia. Nat Commun. 7:116972016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Contreras GF, Neely A, Alvarez O, Gonzalez
C and Latorre R: Modulation of BK channel voltage gating by
different auxiliary β subunits. Proc Natl Acad Sci USA.
109:18991–18996. 2012. View Article : Google Scholar
|
10
|
Brenner R, Chen QH, Vilaythong A, Toney
GM, Noebels JL and Aldrich RW: BK channel beta4 subunit reduces
dentate gyrus excitability and protects against temporal lobe
seizures. Nat Neurosci. 8:1752–1759. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gargiulo S, Greco A, Gramanzini M,
Esposito S, Affuso A, Brunetti A and Vesce G: Mice anesthesia,
analgesia, and care, Part I: Anesthetic considerations in
preclinical research. ILAR J. 53:E55–E69. 2012. View Article : Google Scholar
|
12
|
Chaplan SR, Bach FW, Pogrel JW, Chung JM
and Yaksh TL: Quantitative assessment of tactile allodynia in the
rat paw. J Neurosci Methods. 53:55–63. 1994. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kohno K, Kitano J, Kohro Y, Tozaki-Saitoh
H, Inoue K and Tsuda M: Temporal kinetics of microgliosis in the
spinal dorsal horn after peripheral nerve injury in rodents. Biol
Pharm Bull. 41:1096–1102. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
15
|
Taylor AM, Mehrabani S, Liu S, Taylor AJ
and Cahill CM: Topography of microglial activation in sensory- and
affect-related brain regions in chronic pain. J Neurosci Res.
95:1330–335. 2017. View Article : Google Scholar
|
16
|
Griffin RS, Costigan M, Brenner GJ, Ma CH,
Scholz J, Moss A, Allchorne AJ, Stahl GL and Woolf CJ: Complement
induction in spinal cord microglia results in anaphylatoxin
C5a-mediated pain hypersensitivity. J Neurosci. 27:8699–8708. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Inoue K and Tsuda M: Microglia in
neuropathic pain: Cellular and molecular mechanisms and therapeutic
potential. Nat Rev Neurosci. 19:138–152. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schilling T and Eder C: Microglial K(+)
channel expression in young adult and aged mice. Glia. 63:664–672.
2015. View Article : Google Scholar
|
19
|
Bordey A and Spencer DD: Chemokine
modulation of high-conductance Ca(2+)-sensitive K(+) currents in
microglia from human hippocampi. Eur J Neurosci. 18:2893–2898.
2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schilling T and Eder C: Ion channel
expression in resting and activated microglia of hippocampal slices
from juvenile mice. Brain Res. 1186:21–28. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Parzych K, Zetterqvist AV, Wright WR,
Kirkby NS, Mitchell JA and Paul-Clark MJ: Differential role of
pannexin-1/ATP/P2X7 axis in IL-1β release by human monocytes. FASEB
J. 31:2439–2445. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Scheel O, Papavlassopoulos M, Blunck R,
Gebert A, Hartung T, Zähringer U, Seydel U and Schromm AB: Cell
activation by ligands of the toll-like receptor and interleukin-1
receptor family depends on the function of the large-conductance
potassium channel MaxiK in human macrophages. Infect Immun.
74:4354–4356. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Boucsein C, Zacharias R, Färber K,
Pavlovic S, Hanisch UK and Kettenmann H: Purinergic receptors on
microglial cells: Functional expression in acute brain slices and
modulation of microglial activation in vitro. Eur J Neurosci.
17:2267–2276. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Paolicelli RC, Bolasco G, Pagani F, Maggi
L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E,
Dumas L, et al: Synaptic pruning by microglia is necessary for
normal brain development. Science. 333:1456–1458. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ueno M, Fujita Y, Tanaka T, Nakamura Y,
Kikuta J, Ishii M and Yamashita T: Layer V cortical neurons require
microglial support for survival during postnatal development. Nat
Neurosci. 16:543–551. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zeng X, Xia XM and Lingle CJ:
Species-specific differences among KCNMB3 BK beta3 auxiliary
subunits: Some beta3 N-terminal variants may be primate-specific
subunits. J Gen Physiol. 132:115–129. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee US and Cui J: {beta} subunit-specific
modulations of BK channel function by a mutation associated with
epilepsy and dyskinesia. J Physiol. 587:1481–1498. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Masuda T, Ozono Y, Mikuriya S, Kohro Y,
Tozaki-Saitoh H, Iwatsuki K, Uneyama H, Ichikawa R, Salter MW,
Tsuda M and Inoue K: Dorsal horn neurons release extracellular ATP
in a VNUT-dependent manner that underlies neuropathic pain. Nat
Commun. 7:125292016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mizoguchi Y, Kato TA, Seki Y, Ohgidani M,
Sagata N, Horikawa H, Yamauchi Y, Sato-Kasai M, Hayakawa K, Inoue
R, et al: Brain-derived neurotrophic factor (BDNF) induces
sustained intracellular Ca2+ elevation through the up-regulation of
surface transient receptor potential 3 (TRPC3) channels in rodent
microglia. J Biol Chem. 289:18549–18555. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tay TL, Mai D, Dautzenberg J,
Fernández-Klett F, Lin G, Sagar, Datta M, Drougard A, Stempfl T,
Ardura-Fabregat A, et al: A new fate mapping system reveals
context-dependent random or clonal expansion of microglia. Nat
Neurosci. 20:793–803. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Parkhurst CN, Yang G, Ninan I, Savas JN,
Yates JR III, Lafaille JJ, Hempstead BL, Littman DR and Gan WB:
Microglia promote learning-dependent synapse formation through
brain-derived neurotrophic factor. Cell. 155:1596–1609. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng
J, Wei X, Xu T, Xin WJ, Pang RP, et al: TNF-α differentially
regulates synaptic plasticity in the hippocampus and spinal cord by
microglia-dependent mechanisms after peripheral nerve injury. J
Neurosci. 37:871–881. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ueda H, Matsunaga H, Olaposi OI and Nagai
J: Lysophosphatidic acid: Chemical signature of neuropathic pain.
Biochim Biophys Acta. 1831:61–73. 2013. View Article : Google Scholar
|
34
|
Fujita R, Ma Y and Ueda H:
Lysophosphatidic acid-induced membrane ruffling and brain-derived
neurotrophic factor gene expression are mediated by ATP release in
primary microglia. J Neurochem. 107:152–160. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kuwajima K, Sumitani M, Kurano M, Kano K,
Nishikawa M, Uranbileg B, Tsuchida R, Ogata T, Aoki J, Yatomi Y and
Yamada Y: Lysophosphatidic acid is associated with neuropathic pain
intensity in humans: An exploratory study. PLoS One.
13:e02073102018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X,
Chen Z, Li Y and Cang Y: CRL4A(CRBN) E3 ubiquitin ligase restricts
BK channel activity and prevents epileptogenesis. Nat Commun.
5:39242014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Meredith AL, Thorneloe KS, Werner ME,
Nelson MT and Aldrich RW: Overactive bladder and incontinence in
the absence of the BK large conductance Ca2+-activated K+ channel.
J Biol Chem. 279:36746–36752. 2004. View Article : Google Scholar : PubMed/NCBI
|