Open Access

Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells

  • Authors:
    • Rebecca Czolk
    • Niklas Schwarz
    • Henner Koch
    • Sonja Schötterl
    • Thomas V. Wuttke
    • Per S. Holm
    • Stephan M. Huber
    • Ulrike Naumann
  • View Affiliations

  • Published online on: July 31, 2019     https://doi.org/10.3892/ijmm.2019.4296
  • Pages: 1484-1494
  • Copyright: © Czolk et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Virotherapy using oncolytic viruses is an upcoming therapy strategy for cancer treatment. A variety of preclinical and clinical trials have indicated that adenoviruses may be used as potent agents in the treatment of a variety of cancers, and also for the treatment of brain tumors. In these studies, it has also been shown that oncovirotherapy is safe in terms of toxicity and side effects. In addition, previous studies have presented evidence for a significant role of oncovirotherapy in the activation of anti‑tumor immune responses. With regard to oncolytic adenoviruses, we have demonstrated previously that the multifunctional protein Y‑box binding protein‑1 (YB‑1) is a potent factor that was used to develop an YB‑1‑dependent oncolytic adenovirus (XVir‑N‑31). XVir‑N‑31 provides the opportunity for tumor‑selective replication and exhibited marked oncolytic properties in a mouse glioma tumor model using therapy‑resistant brain tumor initiating cells (BTICs). In a number of, but not all, patients with glioma, YB‑1 is primarily located in the nucleus; this promotes XVir‑N‑31‑replication and subsequently tumor cell lysis. However, in certain BTICs, only a small amount of YB‑1 has been identified to be nuclear, and therefore virus replication is suboptimal. YB‑1 in BTICs was demonstrated to be translocated into the nucleus following irradiation, which was accompanied by an enhancement in XVir‑N‑31 production. R28 glioma spheres implanted in living organotypic human brain slices exhibited a significantly delayed growth rate when pre‑irradiated prior to XVir‑N‑31‑infection as compared with single treatment methods. Consistent with the in vitro data, R28 glioma‑bearing mice exhibited a prolonged mean and median survival following single tumor irradiation prior to intratumoral XVir‑N‑31 injection, compared with the single treatment methods. In conclusion, the present study demonstrated that in an experimental glioma model, tumor irradiation strengthened the effect of an XVir‑N‑31‑based oncovirotherapy.
View Figures
View References

Related Articles

Journal Cover

October-2019
Volume 44 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Czolk R, Schwarz N, Koch H, Schötterl S, Wuttke TV, Holm PS, Huber SM and Naumann U: Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells. Int J Mol Med 44: 1484-1494, 2019.
APA
Czolk, R., Schwarz, N., Koch, H., Schötterl, S., Wuttke, T.V., Holm, P.S. ... Naumann, U. (2019). Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells. International Journal of Molecular Medicine, 44, 1484-1494. https://doi.org/10.3892/ijmm.2019.4296
MLA
Czolk, R., Schwarz, N., Koch, H., Schötterl, S., Wuttke, T. V., Holm, P. S., Huber, S. M., Naumann, U."Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells". International Journal of Molecular Medicine 44.4 (2019): 1484-1494.
Chicago
Czolk, R., Schwarz, N., Koch, H., Schötterl, S., Wuttke, T. V., Holm, P. S., Huber, S. M., Naumann, U."Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells". International Journal of Molecular Medicine 44, no. 4 (2019): 1484-1494. https://doi.org/10.3892/ijmm.2019.4296