1
|
Jastreboff PJ: Tinnitus retraining
therapy. Prog Brain Res. 166:415–423. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Møller AR: Tinnitus: Presence and future.
Prog Brain Res. 166:3–16. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Axelsson A and Ringdahl A: Tinnitus-a
study of its prevalence and characteristics. Br J Audiol. 23:53–62.
1989. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shargorodsky J, Curhan GC and Farwell WR:
Prevalence and characteristics of tinnitus among US adults. Am J
Med. 123:711–718. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kochkin S, Tyler R and Born J: MarkeTrak
VIII: The prevalence of tinnitus in the United States and the
self-reported efficacy of various treatments. Hear Rev. 18:10–27.
2011.
|
6
|
Park RJ and Moon JD: Prevalence and risk
factors of tinnitus: The Korean National Health and nutrition
examination survey 2010-2011 a cross-sectional study. Clin
Otolaryngol. 39:89–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gallus S, Lugo A, Garavello W, Bosetti C,
Santoro E, Colombo P, Perin P, La Vecchia C and Langguth B:
Prevalence and determinants of tinnitus in the Italian adult
population. Neuroepidemiology. 45:12–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bhatt JM, Lin HW and Bhattacharyya N:
Prevalence, severity, exposures, and treatment patterns of tinnitus
in the United States. JAMA Otolaryngol Head Neck Surg. 142:959–965.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shore SE, Roberts LE and Langguth B:
Maladaptive plasticity in tinnitus-triggers, mechanisms and
treatment. Nat Rev Neurol. 12:150–160. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hebert S, Canlon B and Hasson D: Emotional
exhaustion as a predictor of tinnitus. Psychother Psychosom.
81:324–326. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Langguth B: A review of tinnitus symptoms
beyond 'ringing in the ears': A call to action. Curr Med Res Opin.
27:1635–1643. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhan X, Pongstaporn T and Ryugo DK:
Projections of the second cervical dorsal root ganglion to the
cochlear nucleus in rats. J Comp Neurol. 496:335–348. 2006.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou J and Shore S: Convergence of spinal
trigeminal and cochlear nucleus projections in the inferior
colliculus of the guinea pig. J Comp Neurol. 495:100–112. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu C, Stefanescu RA, Martel DT and Shore
SE: Tinnitus: Maladaptive auditory-somatosensory plasticity. Hear
Res. 334:20–29. 2016. View Article : Google Scholar
|
15
|
Zeng C, Nannapaneni N, Zhou J, Hughes LF
and Shore S: Cochlear damage changes the distribution of vesicular
glutamate transporters associated with auditory and nonauditory
inputs to the cochlear nucleus. J Neurosci. 29:4210–4217. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zeng C, Yang Z, Shreve L, Bledsoe S and
Shore S: Somatosensory projections to cochlear nucleus are
upregulated after unilateral deafness. J Neurosci. 32:15791–15801.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dehmel S, Pradhan S, Koehler S, Bledsoe S
and Shore S: Noise overexposure alters long-term
somatosensory-auditory processing in the dorsal cochlear
nucleus-possible basis for tinnitus-related hyperactivity? J
Neurosci. 32:1660–1671. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Koehler SD and Shore SE: Stimulus
timing-dependent plasticity in dorsal cochlear nucleus is altered
in tinnitus. J Neurosci. 33:19647–19656. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Boulland JL, Ferhat L, Tallak Solbu T,
Ferrand N, Chaudhry FA, Storm-Mathisen J and Esclapez M: Changes in
vesicular transporters for gamma-aminobutyric acid and glutamate
reveal vulnerability and reorganization of hippocampal neurons
following pilocarpine-induced seizures. J Comp Neurol. 503:466–485.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Koehler SD and Shore SE: Stimulus-timing
dependent multisensory plasticity in the guinea pig dorsal cochlear
nucleus. PLoS One. 8:e598282013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Heeringa AN, Wu C, Chung C, West M, Martel
D, Liberman L, Liberman MC and Shore SE: Glutamatergic projections
to the cochlear nucleus are redistributed in tinnitus.
Neuroscience. 391:91–103. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kraus KS, Ding D, Jiang H, Lobarinas E,
Sun W and Salvi RJ: Relationship between noise-induced
hearing-loss, persistent tinnitus and growth-associated protein-43
expression in the rat cochlear nucleus: Does synaptic plasticity in
ventral cochlear nucleus suppress tinnitus? Neuroscience.
194:309–325. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou J, Nannapaneni N and Shore S:
Vessicular glutamate transporters 1 and 2 are differentially
associated with auditory nerve and spinal trigeminal inputs to the
cochlear nucleus. J Comp Neurol. 500:777–787. 2007. View Article : Google Scholar
|
24
|
Zeng C, Shroff H and Shore SE: Cuneate and
spinal trigeminal nucleus projections to the cochlear nucleus are
differentially associated with vesicular glutamate transporter-2.
Neuroscience. 176:142–151. 2011. View Article : Google Scholar :
|
25
|
Benowitz LI and Routtenberg A: GAP-43: An
intrinsic determinant of neuronal development and plasticity.
Trends Neurosci. 20:84–91. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hanaya R, Boehm N and Nehlig A:
Dissociation of the immunoreactivity of synaptophysin and GAP-43
during the acute and latent phases of the lithium-pilocarpine model
in the immature and adult rat. Exp Neurol. 204:720–732. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim SH, Kim MK, Yu HS, Kim HS, Park IS,
Park HG, Kang UG and Kim YS: Electroconvulsive seizure increases
phosphorylation of PKC substrates, including GAP-43, MARCKS, and
neurogranin, in rat brain. Prog Neuropsychopharmacol Biol
Psychiatry. 34:115–121. 2010. View Article : Google Scholar
|
28
|
Li S, Nie EH, Yin Y, Benowitz LI, Tung S,
Vinters HV, Bahjat FR, Stenzel-Poore MP, Kawaguchi R, Coppola G and
Carmichael ST: GDF10 is a signal for axonal sprouting and
functional recovery after stroke. Nat Neurosci. 18:1737–1745. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Li S, Overman JJ, Katsman D, Kozlov SV,
Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH and
Carmichael ST: An age-related sprouting transcriptome provides
molecular control of axonal sprouting after stroke. Nat Neurosci.
13:1496–1504. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Galazyuk A and Hébert S: Gap-Prepulse
inhibition of the acoustic startle reflex (GPIAS) for tinnitus
assessment: Current status and future directions. Front Neurol.
6:882015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Longenecker RJ and Galazyuk AV:
Methodological optimization of tinnitus assessment using prepulse
inhibition of the acoustic startle reflex. Brain Res. 1485:54–62.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mun SK, Han KH, Baek JT, Ahn SW, Cho HS
and Chang MY: Losartan prevents maladaptive auditory-somatosensory
plasticity after hearing loss via transforming growth factor-β
signaling suppression. Clin Exp Otorhinolaryngol. 12:33–39. 2019.
View Article : Google Scholar
|
33
|
Eggermont JJ and Roberts LE: Tinnitus:
Animal models and findings in humans. Cell Tissue Res. 361:311–336.
2015. View Article : Google Scholar :
|
34
|
Heeringa AN, Stefanescu RA, Raphael Y and
Shore SE: Altered vesicular glutamate transporter distributions in
the mouse cochlear nucleus following cochlear insult. Neuroscience.
315:114–124. 2016. View Article : Google Scholar :
|
35
|
Muly SM, Gross JS, Morest DK and Potashner
SJ: Synaptophysin in the cochlear nucleus following acoustic
trauma. Exp Neurol. 177:202–221. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Du X, Chen K, Choi CH, Li W, Cheng W,
Stewart C, Hu N, Floyd RA and Kopke RD: Selective degeneration of
synapses in the dorsal cochlear nucleus of chinchilla following
acoustic trauma and effects of antioxidant treatment. Hear Res.
283:1–13. 2012. View Article : Google Scholar
|
37
|
Luo H, Zhang X, Nation J, Pace E, Lepczyk
L and Zhang J: Tinnitus suppression by electrical stimulation of
the rat dorsal cochlear nucleus. Neurosci Lett. 522:16–20. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Norman M, Tomscha K and Wehr M: Isoflurane
blocks temporary tinnitus. Hear Res. 290:64–71. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ropp TJ, Tiedemann KL, Young ED and May
BJ: Effects of unilateral acoustic trauma on tinnitus-related
spontaneous activity in the inferior colliculus. J Assoc Res
Otolaryngol. 15:1007–1022. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rüttiger L, Singer W, Panford-Walsh R,
Matsumoto M, Lee SC, Zuccotti A, Zimmermann U, Jaumann M, Rohbock
K, Xiong H and Knipper M: The reduced cochlear output and the
failure to adapt the central auditory response causes tinnitus in
noise exposed rats. PLoS One. 8:e572472013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fang L, Fu Y and Zhang TY:
Salicylate-Induced hearing loss trigger structural synaptic
modifications in the ventral cochlear nucleus of rats via medial
olivocochlear (MOC) feedback circuit. Neurochem Res. 41:1343–1353.
2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bilak M, Kim J, Potashner SJ, Bohne BA and
Morest DK: New growth of axons in the cochlear nucleus of adult
chinchillas after acoustic trauma. Exp Neurol. 147:256–268. 1997.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Fuentes-Santamaria V, Alvarado JC, Henkel
CK and Brunso-Bechtold JK: Cochlear ablation in adult ferrets
results in changes in insulin-like growth factor-1 and
synaptophysin immunostaining in the cochlear nucleus. Neuroscience.
148:1033–1047. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Illing RB and Horvath M: Re-emergence of
GAP-43 in cochlear nucleus and superior olive following cochlear
ablation in the rat. Neurosci Lett. 194:9–12. 1995. View Article : Google Scholar : PubMed/NCBI
|
45
|
Calhoun ME, Jucker M, Martin LJ,
Thinakaran G, Price DL and Mouton PR: Comparative evaluation of
synaptophysin-based methods for quantification of synapses. J
Neurocytol. 25:821–828. 1996. View Article : Google Scholar : PubMed/NCBI
|
46
|
Frank RAW, Zhu F, Komiyama NH and Grant
SGN: Hierarchical organization and genetically separable
subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem.
142:504–511. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Knöferle J, Ramljak S, Koch JC, Tönges L,
Asif AR, Michel U, Wouters FS, Heermann S, Krieglstein K, Zerr I,
et al: TGF-beta 1 enhances neurite outgrowth via regulation of
proteasome function and EFABP. Neurobiol Dis. 38:395–404. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ishihara A, Saito H and Abe K:
Transforming growth factor-beta 1 and -beta 2 promote neurite
sprouting and elongation of cultured rat hippocampal neurons. Brain
Res. 639:21–25. 1994. View Article : Google Scholar : PubMed/NCBI
|
49
|
Abe K, Chu PJ, Ishihara A and Saito H:
Transforming growth factor-beta 1 promotes re-elongation of injured
axons of cultured rat hippocampal neurons. 723:206–209.
1996.PubMed/NCBI
|
50
|
Noreña AJ: Revisiting the cochlear and
central mechanisms of tinnitus and therapeutic approaches. Audiol
Neurootol. 20(Suppl 1): S53–S59. 2015. View Article : Google Scholar
|
51
|
Patuzzi R: Ion flow in cochlear hair cells
and the regulation of hearing sensitivity. Hear Res. 280:3–20.
2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Guitton MJ, Caston J, Ruel J, Johnson RM,
Pujol R and Puel JL: Salicylate induces tinnitus through activation
of cochlear NMDA receptors. J Neurosci. 23:3944–3952. 2003.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Bing D, Lee SC, Campanelli D, Xiong H,
Matsumoto M, Panford-Walsh R, Wolpert S, Praetorius M, Zimmermann
U, Chu H, et al: Cochlear NMDA receptors as a therapeutic target of
noise-induced tinnitus. Cell Physiol Biochem. 35:1905–1923. 2015.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Guitton MJ and Dudai Y: Blockade of
cochlear NMDA receptors prevents long-term tinnitus during a brief
consolidation window after acoustic trauma. Neural Plast.
2007:809042007. View Article : Google Scholar
|