1
|
Arbyn M, Castellsagué X, de Sanjosé S,
Bruni L, Saraiya M, Bray F and Ferlay J: Worldwide burden of
cervical cancer in 2008. Ann Oncol. 22:2675–2686. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cheng L, Guo Y, Zhan S and Xia P:
Association between HLA-DP gene polymorphisms and cervical cancer
risk: A meta-analysis. Biomed Res Int. 2018.7301595:2018.
|
3
|
Guo Z, Shu Y, Zhou H and Zhang W:
Identification of diagnostic and prognostic biomarkers for cancer:
Focusing on genetic variations in microRNA regulatory pathways
(Review). Mol Med Rep. 13:1943–1952. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kwok GT, Zhao JT, Weiss J, Mugridge N,
Brahmbhatt H, MacDiarmid JA, Robinson BG and Sidhu SB:
Translational applications of microRNAs in cancer, and therapeutic
implications. Noncoding RNA Res. 2:143–150. 2017. View Article : Google Scholar
|
5
|
Rizzo FM and Meyer T: Liquid biopsies for
neuroendocrine tumors: Circulating tumor cells, DNA, and MicroRNAs.
Endocrinol Metab Clin North Am. 47:471–483. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Su J, Wang Q, Liu Y and Zhong M: miR-217
inhibits invasion of hepatocellular carcinoma cells through direct
suppression of E2F3. Mol Cell Biochem. 392:289–296. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
de Yebenes VG, Bartolomé-Izquierdo N,
Nogales-Cadenas R, Pérez-Durán P, Mur SM, Martínez N, Di Lisio L,
Robbiani DF, Pascual-Montano A, Cañamero M, et al: miR-217 is an
oncogene that enhances the germinal center reaction. Blood.
124:229–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen Q, Wang P, Fu Y, Liu X, Xu W, Wei J,
Gao W, Jiang K, Wu J and Miao Y: MicroRNA-217 inhibits cell
proliferation, invasion and migration by targeting Tpd52l2 in human
pancreatic adeno-carcinoma. Oncol Rep. 38:3567–3573.
2017.PubMed/NCBI
|
9
|
Liu P, Yang H, Zhang J, Peng X, Lu Z, Tong
W and Chen J: The lncRNA MALAT1 acts as a competing endogenous RNA
to regulate KRAS expression by sponging miR-217 in pancreatic
ductal adenocarcinoma. Sci Rep. 7:51862017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang J, Zhang HF and Qin CF: MicroRNA-217
functions as a prognosis predictor and inhibits pancreatic cancer
cell proliferation and invasion via targeting E2F3. Eur Rev Med
Pharmacol Sci. 21:4050–4057. 2017.PubMed/NCBI
|
11
|
Jiang C, Yu M, Xie X, Huang G, Peng Y, Ren
D, Lin M, Liu B, Liu M, Wang W and Kuang M: miR-217 targeting DKK1
promotes cancer stem cell properties via activation of the Wnt
signaling pathway in hepatocellular carcinoma. Oncol Rep.
38:2351–2359. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li ZH, Li L, Kang LP and Wang Y:
MicroRNA-92a promotes tumor growth and suppresses immune function
through activation of MAPK/ERK signaling pathway by inhibiting PTEN
in mice bearing U14 cervical cancer. Cancer Med. May 11;2018Epub
ahead of print.
|
13
|
Zheng HY, Shen FJ, Tong YQ and Li Y: PP2A
inhibits cervical cancer cell migration by dephosphorylation of
p-JNK, p-p38 and the p-ERK/MAPK signaling pathway. Curr Med Sci.
38:115–123. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xiao M, Feng Y, Cao G, Liu C and Zhang Z:
A novel MtHSP70-FPR1 fusion protein enhances cytotoxic T lymphocyte
responses to cervical cancer cells by activating human
monocyte-derived dendritic cells via the p38 MAPK signaling
pathway. Biochem Biophys Res Commun. 503:2108–2116. 2018.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang D, Li X, Yao Z, Wei C, Ning N and Li
J: GABAergic signaling facilitates breast cancer metastasis by
promoting ERK1/2-dependent phosphorylation. Cancer Lett.
348:100–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shilo A, Ben Hur V, Denichenko P, Stein I,
Pikarsky E, Rauch J, Kolch W, Zender L and Karni R: Splicing factor
hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf
splicing in hepatocellular carcinoma development. Rna. 20:505–515.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang C, Jin H, Gao D, Lieftink C, Evers B,
Jin G, Xue Z, Wang L, Beijersbergen RL, Qin W and Bernards R:
Phospho-ERK is a biomarker of response to a synthetic lethal drug
combination of sorafenib and MEK inhibition in liver cancer. J
Hepatol. 69:1057–1065. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li Q, Feng Y, Chao X, Shi S, Liang M, Qiao
Y, Wang B, Wang P and Zhu Z: HOTAIR contributes to cell
proliferation and metastasis of cervical cancer via targetting
miR-23b/MAPK1 axis. Biosci Rep. 38:BSR201715632018. View Article : Google Scholar :
|
19
|
Tasioudi KE, Saetta AA, Sakellariou S,
Levidou G, Michalopoulos NV, Theodorou D, Patsouris E and
Korkolopoulou P: pERK activation in esophageal carcinomas:
Clinicopathological associations. Pathol Res Pract. 208:398–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
McCubrey JA, Steelman LS, Chappell WH,
Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M,
Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth,
malignant transformation and drug resistance. Biochim Biophys Acta.
1773:1263–1284. 2007. View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
22
|
Burd EM: Human papillomavirus and cervical
cancer. Clin Microbiol Rev. 16:1–17. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nour NM: Cervical cancer: A preventable
death. Rev Obstet Gynecol. 2:240–244. 2009.
|
24
|
Zhou W, Song F, Wu Q, Liu R, Wang L, Liu
C, Peng Y, Mao S, Feng J and Chen C: miR-217 inhibits
triple-negative breast cancer cell growth, migration, and invasion
through targeting KLF5. PLoS One. 12:e01763952017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tian YW, Shen Q, Jiang QF, Wang YX, Li K
and Xue HZ: Decreased levels of miR-34a and miR-217 act as
predictor biomarkers of aggressive progression and poor prognosis
in hepatocellular carcinoma. Minerva Med. 108:108–113. 2017.
|
27
|
Azam AT, Bahador R, Hesarikia H, Shakeri M
and Yeganeh A: Downregulation of microRNA-217 and microRNA-646 acts
as potential predictor biomarkers in progression, metastasis, and
unfavorable prognosis of human osteosarcoma. Tumour Biol.
37:5769–5773. 2016. View Article : Google Scholar
|
28
|
Zhang Q, Yuan Y, Cui J, Xiao T and Jiang
D: MiR-217 promotes tumor proliferation in breast cancer via
targeting DACH1. J Cancer. 6:184–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu YP, Sun XH, Cao XL, Jiang WW, Wang XX,
Zhang YF and Wang JL: MicroRNA-217 suppressed
epithelial-to-mesenchymal transition in gastric cancer metastasis
through targeting PTPN14. Eur Rev Med Pharmacol Sci. 21:1759–1767.
2017.PubMed/NCBI
|
30
|
Wang LP, Wang JP and Wang XP: HOTAIR
contributes to the growth of liver cancer via targeting miR-217.
Oncol Lett. 15:7963–7972. 2018.PubMed/NCBI
|
31
|
Salehi B, Zucca P, Sharifi-Rad M, Pezzani
R, Rajabi S, Setzer WN, Varoni EM, Iriti M, Kobarfard F and
Sharifi-Rad J: Phytotherapeutics in cancer invasion and metastasis.
Phytother Res. 32:1425–1449. 2018. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Cascio S and Finn OJ: Intra- and
extra-cellular events related to altered glycosylation of MUC1
promote chronic inflammation, tumor progression, invasion, and
metastasis. Biomolecules. 6:E392016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee CH, Lin YF, Chen YC, Wong SM, Juan SH
and Huang HM: MPT0B169 and MPT0B002, new tubulin inhibitors, induce
growth inhibition, G2/M cell cycle arrest, and apoptosis in human
colorectal cancer cells. Pharmacology. 102:262–271. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Tian X, Han Z, Zhu Q, Tan J, Liu W, Wang
Y, Chen W, Zou Y, Cai Y, Huang S, et al: Silencing of cadherin-17
enhances apoptosis and inhibits autophagy in colorectal cancer
cells. Biomed Pharmacother. 108:331–337. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Qian W, Lv S, Li J, Chen K, Jiang Z, Cheng
L, Zhou C, Yan B, Cao J, Ma Q and Duan W: Norepinephrine enhances
cell viability and invasion, and inhibits apoptosis of pancreatic
cancer cells in a Notch-1-dependent manner. Oncol Rep.
40:3015–3023. 2018.PubMed/NCBI
|
36
|
Soleimani A, Bahreyni A, Roshan MK,
Soltani A, Ryzhikov M, Shafiee M, Soukhtanloo M, Jaafari MR,
Mashkani B and Hassanian SM: Therapeutic potency of pharmacological
adenosine receptors agonist/antagonist on cancer cell apoptosis in
tumor microenvironment, current status, and perspectives. J Cell
Physiol. 234:2329–2336. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Orton RJ, Sturm OE, Vyshemirsky V, Calder
M, Gilbert DR and Kolch W: Computational modelling of the
receptor-tyrosine-kinase-activated MAPK pathway. Biochem J.
392:249–261. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kyriakis JM: Making the connection:
Coupling of stress-activated ERK/MAPK
(extracellular-signal-regulated kinase/mitogen-activated protein
kinase) core signalling modules to extracellular stimuli and
biological responses. Biochem Soc Symp. 64:29–48. 1999.PubMed/NCBI
|
39
|
Zhang Y, Meng L, Xiao L, Liu R, Li Z and
Wang YL: The RNA-binding protein PCBP1 functions as a tumor
suppressor in prostate cancer by inhibiting mitogen activated
protein kinase 1. Cell Physiol Biochem. 48:1747–1754. 2018.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang N, Lu C and Chen L: miR-217
regulates tumor growth and apoptosis by targeting the MAPK
signaling pathway in colorectal cancer. Oncol Lett. 12:4589–4597.
2016. View Article : Google Scholar
|
41
|
Hu L, Wu H, Wan X, Liu L, He Y, Zhu L, Liu
S, Yao H and Zhu Z: MicroRNA-585 suppresses tumor proliferation and
migration in gastric cancer by directly targeting MAPK1. Biochem
Biophys Res Commun. 499:52–58. 2018. View Article : Google Scholar : PubMed/NCBI
|