1
|
Angus DC and van der Poll T: Severe sepsis
and septic shock. N Engl J Med. 369:20632013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Aziz M, Jacob A, Yang WL, Matsuda A and
Wang P: Current trends in inflammatory and immunomodulatory
mediators in sepsis. J Leukoc Biol. 93:329–342. 2013. View Article : Google Scholar :
|
3
|
Hoste EA, Bagshaw SM, Bellomo R, Cely CM,
Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, et
al: Epidemiology of acute kidney injury in critically ill patients:
The multinational AKI-EPI study. Intensive Care Med. 41:1411–1423.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Khwaja A: KDIGO clinical practice
guidelines for acute kidney injury. Nephron Clin Pract. 120:pp.
c179–c184. 2012, PubMed/NCBI
|
5
|
Alobaidi R, Basu RK, Goldstein SL and
Bagshaw SM: Sepsis-associated acute kidney injury. Semin Nephrol.
35:2–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cruz DN, Bolgan I, Perazella MA, Bonello
M, de Cal M, Corradi V, Polanco N, Ocampo C, Nalesso F, Piccinni P,
et al: North east italian prospective hospital renal outcome survey
on acute kidney injury (NEiPHROS-AKI): Targeting the problem with
the RIFLE criteria. Clin J Am Soc Nephrol. 2:418–425. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mayeux PR and MacMillan-Crow LA:
Pharmacological targets in the renal peritubular microenvironment:
Implications for therapy for sepsis-induced acute kidney injury.
Pharmacol Ther. 134:139–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Langenberg C, Bellomo R, May C, Wan L, Egi
M and Morgera S: Renal blood flow in sepsis. Crit Care.
9:R363–R374. 2005. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Schrier RW and Wang W: Acute renal failure
and sepsis. N Engl J Med. 351:159–169. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takasu O, Gaut JP, Watanabe E, To K,
Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et
al: Mechanisms of cardiac and renal dysfunction in patients dying
of sepsis. Am J Respir Crit Care Med. 187:509–517. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dong W, Li Z, Chen Y, Zhang L, Ye Z, Liang
H, Li R, Xu L, Zhang B, Liu S, et al: Necrostatin-1 attenuates
sepsis-associated acute kidney injury by promoting autophagosome
elimination in renal tubular epithelial cells. Mol Med Rep.
17:3194–3199. 2018.
|
12
|
De Backer D, Creteur J, Preiser JC, Dubois
MJ and Vincent JL: Microvascular blood flow is altered in patients
with sepsis. Am J Respir Crit Care Med. 166:98–104. 2002.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Cen C, Aziz M, Yang WL, Zhou M, Nicastro
JM, Coppa GF and Wang P: Milk fat globule-epidermal growth
factor-factor VIII attenuates sepsis-induced acute kidney injury. J
Surg Res. 213:281–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mir SM, Ravuri HG, Pradhan RK, Narra S,
Kumar JM, Kuncha M, Kanjilal S and Sistla R: Ferulic acid protects
lipopolysaccha-ride-induced acute kidney injury by suppressing
inflammatory events and upregulating antioxidant defenses in Balb/c
mice. Biomed Pharmacother. 100:304–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Eltzschig HK, Sitkovsky MV and Robson SC:
Purinergic signaling during inflammation. N Engl J Med.
367:2322–2333. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yan J, Li Y, Yang H, Zhang L, Yang B, Wang
M and Li Q: Interleukin-17A participates in podocyte injury by
inducing IL-1β secretion through ROS-NLRP3 inflammasome-caspase-1
pathway. Scand J Immunol. 87:pp. e126452018, View Article : Google Scholar
|
17
|
Yao ST, Cao F, Chen JL, Chen W, Fan RM, Li
G, Zeng YC, Jiao S, Xia XP, Han C and Ran QS: NLRP3 is required for
complement-mediated caspase-1 and IL-1beta activation in ICH. J Mol
Neurosci. 61:385–395. 2017. View Article : Google Scholar
|
18
|
Pérez-Cabeza de Vaca R, Dominguez-López M,
Guerrero-Celis N, Rodriguez-Aguilera JR and Chagoya de Sánchez V:
Inflammation is regulated by the adenosine derivative molecule,
IFC-305, during reversion of cirrhosis in a CCl4 rat
model. Int Immunopharmacol. 54:12–23. 2018. View Article : Google Scholar
|
19
|
Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng
X, Liu Z, An X, Toque HA, Dong Z, et al: Regulation of endothelial
intracellular adenosine via adenosine kinase epigenetically
modulates vascular inflammation. Nat Commun. 8:9432017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Savio LEB, de Andrade Mello P, Figliuolo
VR, de Avelar Almeida TF, Santana PT, Oliveira SDS, Silva CLM,
Feldbrügge L, Csizmadia E, Minshall RD, et al: CD39 limits P2X7
receptor inflammatory signaling and attenuates sepsis-induced liver
injury. J Hepatol. 67:716–726. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
22
|
Tabas I and Glass CK: Anti-inflammatory
therapy in chronic disease: Challenges and opportunities. Science.
339:166–172. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dinarello CA, Simon A and van der Meer JW:
Treating inflammation by blocking interleukin-1 in a broad spectrum
of diseases. Nat Rev Drug Discov. 11:633–652. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mascanfroni ID, Yeste A, Vieira SM, Burns
EJ, Patel B, Sloma I, Wu Y, Mayo L, Ben-Hamo R, Efroni S, et al:
IL-27 acts on DCs to suppress the T cell response and autoimmunity
by inducing expression of the immunoregulatory molecule CD39. Nat
Immunol. 14:1054–1063. 2013. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Jo EK, Kim JK, Shin DM and Sasakawa C:
Molecular mechanisms regulating NLRP3 inflammasome activation. Cell
Mol Immunol. 13:148–159. 2016. View Article : Google Scholar :
|
26
|
Zhong Z, Sanchez-Lopez E and Karin M:
Autophagy, NLRP3 inflammasome and auto-inflammatory/immune
diseases. Clin Exp Rheumatol. 34(4 Suppl 98): pp. S12–S16. 2016
|
27
|
Mao K, Chen S, Chen M, Ma Y, Wang Y, Huang
B, He Z, Zeng Y, Hu Y, Sun S, et al: Nitric oxide suppresses NLRP3
inflammasome activation and protects against LPS-induced septic
shock. Cell Res. 23:201–212. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Heneka MT, Kummer MP, Stutz A, Delekate A,
Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, et
al: NLRP3 is activated in Alzheimer's disease and contributes to
pathology in APP/PS1 mice. Nature. 493:674–678. 2013. View Article : Google Scholar
|
29
|
Stearnskurosawa DJ, Osuchowski MF,
Valentine C, Kurosawa S and Remick DG: The pathogenesis of sepsis.
Annu Rev Pathol. 6:19–48. 2011. View Article : Google Scholar
|
30
|
Csóka B, Németh ZH, Törő G, Koscsó B,
Kókai E, Robson SC, Enjyoji K, Rolandelli RH, Erdélyi K, Pacher P
and Haskó G: CD39 improves survival in microbial sepsis by
attenuating systemic inflammation. FASEB J. 29:25–36. 2015.
View Article : Google Scholar :
|
31
|
Bhat M, Romagnuolo J, da Silveira E,
Reinhold C, Valois E, Martel M, Barkun JS and Barkun AN: Randomised
clinical trial: MRCP-first vs. ERCP-first approach in patients with
suspected biliary obstruction due to bile duct stones. Aliment
Pharmacol Ther. 38:1045–1053. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li F, Xu M, Wang M, Wang L, Wang H, Zhang
H, Chen Y, Gong J, Zhang JJ, Adcock IM, et al: Roles of
mitochondrial ROS and NLRP3 inflammasome in multiple ozone-induced
lung inflammation and emphysema. Respir Res. 19:2302018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yu X, Zhao Q, Zhang X and Zhang H, Liu Y,
Wu X, Li M, Li X, Zhang J, Ruan X and Zhang H: Celastrol
ameliorates inflammation through inhibition of NLRP3 inflammasome
activation. Oncotarget. 8:67300–67314. 2017.PubMed/NCBI
|
34
|
Knowles JR: Enzyme-catalyzed phosphoryl
transfer reactions. Annu Rev Biochem. 49:877–919. 1980. View Article : Google Scholar : PubMed/NCBI
|
35
|
Morandini AC, Savio LE and Coutinho-Silva
R: The role of P2X7 receptor in infectious inflammatory diseases
and the influence of ectonucleotidases. Biomed J. 37:169–177. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Robson SC, Sévigny J and Zimmermann H: The
E-NTPDase family of ectonucleotidases: Structure function
relationships and pathophysiological significance. Purinergic
Signal. 2:409–430. 2006. View Article : Google Scholar
|