1
|
Ratziu V, Bellentanib S, Cortez-Pintoc H,
Dayd C and Marchesinie G: A position statement on NAFLD/NASH based
on the EASL 2009, special conference. J Hepatol. 53:372–384. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Williams CD, Stengel J, Asike MI, Torres
DM, Shaw J, Contreras M, Landt CL and Harrison SA: Prevalence of
nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
among a largely middle-aged population utilizing ultrasound and
liver biopsy: A prospective study. Gastroenterology. 140:124–131.
2011. View Article : Google Scholar
|
3
|
Chalasani N, Younossi Z, Lavine JE, Diehl
AM, Brunt EM, Cusi K, Charlton M and Sanyal AJ: The diagnosis and
management of non-alcoholic fatty liver disease: Practice guideline
by the American association for the study of liver diseases,
American college of gastroenterology, and the American
gastro-enterological association. Hepatology. 55:2005–2023. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dhamija E, Paul SB and Kedia S:
Non-alcoholic fatty liver disease associated with hepatocellular
carcinoma: An increasing concern. Indian J Med Res. 149:9–17. 2019.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ratziu V, Goodman Z and Sanyal A: Current
efforts and trends in the treatment of NASH. J Hepatol. 62(Suppl
1): S65–S75. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Takahashi Y, Sugimoto K, Inui H and
Fukusato T: Current pharmacological therapies for nonalcoholic
fatty liver disease/nonalcoholic steatohepatitis. World J
Gastroenterol. 21:3777–3785. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guillaume M and Ratziu V: Pharmacological
agents for nonalcoholic steatohepatitis. Hepatol Int. 7(Suppl 2):
833–841. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cave MC, Clair HB, Hardesty JE, Falkner
KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ and
Prough RA: Nuclear receptors and nonalcoholic fatty liver disease.
Biochim Biophys Acta. 1859:1083–1099. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bar-Yehuda S, Stemmer SM, Madi L, Castel
D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L
and Fishman P: The A3 adenosine receptor agonist CF102 induces
apoptosis of hepatocellular carcinoma via de-regulation of the Wnt
and NF-kappaB signal transduction pathways. Int J Oncol.
33:287–295. 2008.PubMed/NCBI
|
10
|
Cohen S, Stemmer SM, Zozulya G, Ochaion A,
Patoka R, Barer F, Bar-Yehuda S, Rath-Wolfson L, Jacobson KA and
Fishman P: CF102 an A3 adenosine receptor agonist mediates
anti-tumor and anti-inflammatory effects in the liver. J Cell
Physiol. 226:2438–2447. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ohana G, Cohen S, Rath-Wolfson L and
Fishman P: A3 adenosine receptor agonist, CF102, protects against
hepatic ischemia/reper-fusion injury following partial hepatectomy.
Mol Med Rep. 14:4335–4341. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Stemmer SM, Benjaminov O, Medalia G,
Ciuraru NB, Silverman MH, Bar-Yehuda S, Fishman S, Harpaz Z,
Farbstein M, Cohen S, et al: CF102 for the treatment of
hepatocellular carcinoma: A phase I/II, open-label, dose-escalation
study. The Oncologist. 18:25–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ochaion A, Bar-Yehuda S, Cohen S, Amital
H, Jacobson KA, Joshi BV, Gao ZG, Barer F, Patoka R, Del Valle L,
et al: The A3 adenosine receptor agonist CF502 inhibits the PI3K,
PKB/Akt and NF-kappaB signaling pathway in synoviocytes from
rheumatoid arthritis patients and in adjuvant-induced arthritis
rats. Biochem Pharmacol. 76:482–494. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fishman P, Bar-Yehuda S, Madi L,
Rath-Wolfson L, Ochaion A, Cohen S and Baharav E: The PI3K-NF-κB
signal transduction pathway is involved in mediating the
anti-inflammatory effect of IB-MECA in adjuvant induced arthritis.
Arthritis Res Ther. 8:R332006. View
Article : Google Scholar
|
15
|
Miao CG, Yang YY, He X, Huang C, Huang Y,
Zhang L, Lv XW, Jin Y and Li J: Wnt signaling in liver fibrosis:
Progress challenges and potential directions. Biochimie.
95:2326–2335. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang C, Liu XQ, Sun HN, Meng XM, Bao YW,
Zhang HP, Pan FM and Zhang C: Octreotide attenuates hepatic
fibrosis and hepatic stellate cells proliferation and activation by
inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1.
Int Immunopharmacol. 63:183–190. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Matsuda S, Kobayashi M and Kitagishi Y:
Roles for PI3K/akt/PTEN pathway in cell signaling of nonalcoholic
fatty liver disease. ISRN Endocrinol. 2013:4724322013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Abu-Tair L, Axelrod JH, Doron S, Ovadya Y,
Krizhanovsky V, Galun E, Amer J and Safadi R: Natural killer
cell-dependent anti-fibrotic pathway in liver injury via toll-like
receptor-9. PLoS One. 8:e825712013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kleiner DE, Brunt EM, Van Natta M, Behling
C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS,
Unalp-Arida A, et al: Design and validation of a histological
scoring system for nonalcoholic fatty liver disease. Hepatology.
41:1313–1321. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
21
|
Gomez G and Sitkovsky MV: Differential
requirement for A2a and A3 adenosine receptors for the protective
effect of inosine in vivo. Blood. 102:4472–4478. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yoda-Murakami M, Taniguchi M, Takahashi K,
Kawamata S, Saito K, Choi-Miura NH and Tomita M: Change in
expression of GBP28/adiponectin in carbon
tetrachloride-administrated mouse liver. Biochem Biophys Res
Commun. 285:372–377. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Madi L, Bar-Yehuda S, Barer F, Ardon E,
Ochaion A and Fishman P: A3 adenosine receptor activation in
melanoma cells: Association between receptor fate and tumor growth
inhibition. J Biol Chem. 278:42121–42130. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW and
Zhu L: β-catenin is overexpressed in hepatic fibrosis and blockage
of Wnt/β-catenin signaling inhibits hepatic stellate cell
activation. Mol Med Rep. 9:2145–2151. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang JN, Li L, Li LY, Yan Q, Li J and Xu
T: Emerging role and therapeutic implication of Wnt signaling
pathway in liver fibrosis. Gene. 674:57–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Núñez KG, Gonzalez-Rosario J, Thevenot PT
and Cohen AJ: Cyclin D1 in the liver: Role of noncanonical
signaling in liver steatosis and hormone regulation. Ochsner J.
17:56–65. 2017.PubMed/NCBI
|
27
|
Udomsinprasert W, Honsawek S and
Poovorawan Y: Adiponectin as a novel biomarker for liver fibrosis.
World J Hepatol. 10:708–718. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen GJ, Harvey BK, Shen H, Chou J, Victor
A and Wang Y: Activation of adenosine A3 receptors reduces ischemic
brain injury in rodents. J Neurosci Res. 84:1848–1855. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Cross HR, Murphy E, Black RG, Auchampach J
and Steenbergen C: Overexpression of A(3) adenosine receptors
decreases heart rate, preserves energetics, and protects ischemic
hearts. Am J Physiol Heart Circ Physiol. 283:H1562–H1568. 2002.
View Article : Google Scholar : PubMed/NCBI
|