1
|
Lu Y, Stamm C, Nobre D, Pruijm M, Teta D,
Cherpillod A, Halabi G, Phan O, Fumeaux Z, Bullani R, et al:
Changing trends in end-stage renal disease patients with diabetes.
Swiss Med Wkly. 147:w144582017.PubMed/NCBI
|
2
|
Rahimi Z: The role of renin angiotensin
aldosterone system genes in diabetic nephropathy. Can J Diabetes.
40:178–183. 2016. View Article : Google Scholar
|
3
|
Xiong H, Yan T, Zhang W, Shi F, Jiang X,
Wang X, Li S, Chen Y, Chen C and Zhu Y: miR-613 inhibits cell
migration and invasion by downregulating Daam1 in triple-negative
breast cancer. Cell Signal. 44:33–42. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Beltrami C, Simpson K, Jesky M, Wonnacott
A, Carrington C, Holmans P, Newbury L, Jenkins R, Ashdown T, Dayan
C, et al: Association of elevated urinary miR-126, miR-155, and
miR-29b with diabetic kidney disease. Am J Pathol. 188:1982–1992.
2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tang WB, Zheng L, Yan R, Yang J, Ning J,
Peng L, Zhou Q and Chen L: miR302a-3p may modulate renal
epithelial-mesen-chymal transition in diabetic kidney disease by
targeting ZEB1. Nephron. 138:231–242. 2018. View Article : Google Scholar
|
7
|
Hamada-Kanazawa M, Ogawa D, Takano M and
Miyake M: Sox6 suppression induces RA-dependent apoptosis mediated
by BMP-4 expression during neuronal differentiation in P19 cells.
Mol Cell Biochem. 412:49–57. 2016. View Article : Google Scholar :
|
8
|
Han Y, Xu H, Cheng J, Zhang Y, Gao C, Fan
T, Peng B, Li B, Liu L and Cheng Z: Downregulation of long
non-coding RNA H19 promotes P19CL6 cells proliferation and inhibits
apoptosis during late-stage cardiac differentiation via
miR-19b-modulated Sox6. Cell Biosci. 6:582016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Iguchi H, Urashima Y, Inagaki Y, Ikeda Y,
Okamura M, Tanaka T, Uchida A, Yamamoto TT, Kodama T and Sakai J:
SOX6 suppresses cyclin D1 promoter activity by interacting with
beta-catenin and histone deacetylase 1, and its down-regulation
induces pancreatic beta-cell proliferation. J Biol Chem.
282:19052–19061. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pleskovič A, Šantl Letonja M, Cokan
Vujkovac A, Kruzliak P and Petrovič D: SOX6 gene polymorphism
(rs16933090) and markers of subclinical atherosclerosis in patients
with type 2 diabetes mellitus. Int Angiol. 35:552–556. 2016.
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
12
|
Liu F, Zhang ZP, Xin GD, Guo LH, Jiang Q
and Wang ZX: miR-192 prevents renal tubulointerstitial fibrosis in
diabetic nephropathy by targeting Egr1. Eur Rev Med Pharmacol Sci.
22:4252–4260. 2018.PubMed/NCBI
|
13
|
Rossing P, Persson F and Frimodt-Møller M:
Prognosis and treatment of diabetic nephropathy: Recent advances
and perspectives. Nephrol Ther. 14(Suppl 1): S31–S37. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou Y, Zheng X, Chen LJ, Xu B and Jiang
JT: microRNA-181b suppresses the metastasis of lung cancer cells by
targeting sex determining region Y-related high mobility group-box
6 (Sox6). Pathol Res Pract. 215:335–342. 2019. View Article : Google Scholar
|
15
|
Jiang W, Yuan Q, Jiang Y, Huang L, Chen C,
Hu G, Wan R, Wang X and Yang L: Identification of Sox6 as a
regulator of pancreatic cancer development. J Cell Mol Med.
22:1864–1872. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kurtsdotter I, Topcic D, Karlén A, Singla
B, Hagey DW, Bergsland M, Siesjö P, Nistér M, Carlson JW, Lefebvre
V, et al: SOX5/6/21 prevent oncogene-driven transformation of brain
stem cells. Cancer Res. 77:4985–4997. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jia Y, Zheng Z, Guan M, Zhang Q, Li Y,
Wang L and Xue Y: Exendin-4 ameliorates high glucose-induced
fibrosis by inhibiting the secretion of miR-192 from injured renal
tubular epithelial cells. Exp Mol Med. 50:562018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xue M, Cheng Y, Han F, Chang Y, Yang Y, Li
X and Chen L, Lu Y, Sun B and Chen L: Triptolide attenuates renal
tubular epithelial-mesenchymal transition via the
MiR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease.
Int J Biol Sci. 14:1545–1557. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Assmann TS, Recamonde-Mendoza M, de Souza
BM, Bauer AC and Crispim D: MicroRNAs and diabetic kidney disease:
Systematic review and bioinformatic analysis. Mol Cell Endocrinol.
477:90–102. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xiang H, Xue W, Wu X, Zheng J, Ding C, Li
Y and Dou M: FOXP1 inhibits high glucose-induced ECM accumulation
and oxidative stress in mesangial cells. Chem Biol Interact.
313:1088182019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li N, Wang LJ, Xu WL, Liu S and Yu JY:
MicroRNA-379-5p suppresses renal fibrosis by regulating the
LIN28/let-7 axis in diabetic nephropathy. Int J Mol Med. 2019.
View Article : Google Scholar
|
22
|
Zhang P, Sun Y, Peng R, Chen W, Fu X,
Zhang L, Peng H and Zhang Z: Long non-coding RNA Rpph1 promotes
inflammation and proliferation of mesangial cells in diabetic
nephropathy via an interaction with Gal-3. Cell Death Dis.
10:5262019. View Article : Google Scholar : PubMed/NCBI
|