You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Guruharsha KG, Kankel MW and Artavanis-Tsakonas S: The Notch signalling system: Recent insights into the complexity of a conserved pathway. Nat Rev Genet. 13:654–666. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Meurette O and Mehlen P: Notch signaling in the tumor micro-environment. Cancer Cell. 34:536–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Siebel C and Lendahl U: Notch signaling in development, tissue homeostasis, and disease. Physiol Rev. 97:1235–1294. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA, et al: Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 565:505–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ranganathan P, Weaver KL and Capobianco AJ: Notch signalling in solid tumours: A little bit of everything but not all the time. Nat Rev Cancer. 11:338–351. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ntziachristos P, Lim JS, Sage J and Aifantis I: From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell. 25:318–334. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Aster JC, Pear WS and Blacklow SC: The varied roles of Notch in cancer. Annu Rev Pathol. 12:245–275. 2017. View Article : Google Scholar | |
|
Nowell CS and Radtke F: Notch as a tumour suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Espinoza I and Miele L: Notch inhibitors for cancer treatment. Pharmacol Ther. 139:95–110. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Owen DH, Giffin MJ, Bailis JM, Smit MD, Carbone DP and He K: DLL3: An emerging target in small cell lung cancer. J Hematol Oncol. 12:612019. View Article : Google Scholar : PubMed/NCBI | |
|
D'Souza B, Miyamoto A and Weinmaster G: The many facets of Notch ligands. Oncogene. 27:5148–5167. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW, Rosenstiel PE, Shawber C and Kitajewski J: NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov. 5:182–197. 2015. View Article : Google Scholar | |
|
Kakuda S and Haltiwanger RS: Deciphering the Fringe-mediated Notch code: Identification of activating and inhibiting sites allowing discrimination between ligands. Dev Cell. 40:193–201. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME and Elowitz MB: Dynamic ligand discrimination in the Notch signaling pathway. Cell. 172:869–880.e19. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sjöqvist M and Andersson ER: Do as I say, Not(ch) as I do: Lateral control of cell fate. Dev Biol. 447:58–70. 2019. View Article : Google Scholar | |
|
Lambrecht BN, Vanderkerken M and Hammad H: The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol. 18:745–758. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang G, Zhou R, Zhou Q, Guo X, Yan C, Ke M, Lei J and Shi Y: Structural basis of Notch recognition by human γ-secretase. Nature. 565:192–197. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kopan R and Ilagan MX: The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, et al: Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 13:70–77. 2007. View Article : Google Scholar | |
|
Vermezovic J, Adamowicz M, Santarpia L, Rustighi A, Forcato M, Lucano C, Massimiliano L, Costanzo V, Bicciato S, Del Sal G and d'Adda di Fagagna F: Notch is a direct negative regulator of the DNA-damage response. Nat Struct Mol Biol. 22:417–424. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Polacheck WJ, Kutys ML, Yang J, Eyckmans J, Wu Y, Vasavada H, Hirschi KK and Chen CS: A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 552:258–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shan H, Li X, Xiao X, Dai Y, Huang J, Song J, Liu M, Yang L, Lei H, Tong Y, et al: USP7 deubiquitinates and stabilizes NOTCH1 in T-cell acute lymphoblastic leukemia. Signal Transduct Target Ther. 3:292018. View Article : Google Scholar : PubMed/NCBI | |
|
LaFoya B, Munroe JA, Pu X and Albig AR: Src kinase phosphorylates Notch1 to inhibit MAML binding. Sci Rep. 8:155152018. View Article : Google Scholar : PubMed/NCBI | |
|
Ramakrishnan G, Davaakhuu G, Chung WC, Zhu H, Rana A, Filipovic A, Green AR, Atfi A, Pannuti A, Miele L and Tzivion G: AKT and 143-3 regulate Notch4 nuclear localization. Sci Rep. 5:87822015. View Article : Google Scholar | |
|
Sun Y, Klauzinska M, Lake RJ, Lee JM, Santopietro S, Raafat A, Salomon D, Callahan R and Artavanis-Tsakonas S: Trp53 regulates Notch 4 signaling through Mdm2. J Cell Sci. 124:1067–1076. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
McGill MA and McGlade CJ: Mammalian Numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem. 278:23196–23203. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Pettersson S, Sczaniecka M, McLaren L, Russell F, Gladstone K, Hupp T and Wallace M: Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J. 450:523–536. 2013. View Article : Google Scholar | |
|
Bhardwaj A, Yang Y, Ueberheide B and Smith S: Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Nat Commun. 8:22142017. View Article : Google Scholar : PubMed/NCBI | |
|
Schaller MA, Logue H, Mukherjee S, Lindell DM, Coelho AL, Lincoln P, Carson WF IV, Ito T, Cavassani KA, Chensue SW, et al: Delta-like 4 differentially regulates murine CD4 T cell expansion via BMI1. PLoS One. 5:e121722010. View Article : Google Scholar : PubMed/NCBI | |
|
López-Arribillaga E, Rodilla V, Pellegrinet L, Guiu J, Iglesias M, Roman AC, Gutarra S, González S, Muñoz-Cánoves P, Fernández- Salguero P, et al: Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development. 142:41–50. 2015. View Article : Google Scholar | |
|
Ronchini C and Capobianco AJ: Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): Implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol. 21:5925–5934. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Tanis KQ, Podtelezhnikov AA, Blackman SC, Hing J, Railkar RA, Lunceford J, Klappenbach JA, Wei B, Harman A, Camargo LM, et al: An accessible pharmacodynamic transcriptional biomarker for Notch target engagement. Clin Pharmacol Ther. 99:370–380. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
García-Peydró M, Fuentes P, Mosquera M, García-León MJ, Alcain J, Rodríguez A, García de Miguel P, Menéndez P, Weijer K, Spits H, et al: The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest. 128:2802–2818. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20:3427–3436. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Procopio MG, Laszlo C, Al Labban D, Kim DE, Bordignon P, Jo SH, Goruppi S, Menietti E, Ostano P, Ala U, et al: Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol. 17:1193–1204. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jarriault S, Le Bail O, Hirsinger E, Pourquié O, Logeat F, Strong CF, Brou C, Seidah NG and Isra l A: Delta-1 activation of Notch-1 signaling results in HES-1 transactivation. Mol Cell Biol. 18:7423–7431. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, et al: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 545:360–364. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C, Yuan J, Ware C, MacLean J, Garrett-Engele PW, et al: Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov. 4:1154–1167. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Maier MM and Gessler M: Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem Biophys Res Commun. 275:652–660. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, et al: c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20:2096–2109. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Gekas C, D'Altri T, Aligué R, González J, Espinosa L and Bigas A: β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia. 30:2002–2010. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tottone L, Zhdanovskaya N, Carmona Pestaña Á, Zampieri M, Simeoni F, Lazzari S, Ruocco V, Pelullo M, Caiafa P, Felli MP, et al: Histone modifications drive aberrant Notch3 expression/activity and growth in T-ALL. Front Oncol. 9:1982019. View Article : Google Scholar : PubMed/NCBI | |
|
Pirot P, van Grunsven LA, Marine JC, Huylebroeck D and Bellefroid EJ: Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem Biophys Res Commun. 322:526–534. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL, Noda K, Palliyaguru DL, Fujimuro M, Boley PA, Tanaka Y, et al: Notch-Nrf2 axis: Regulation of Nrf2 gene expression and cytoprotection by Notch signaling. Mol Cell Biol. 34:653–663. 2014. View Article : Google Scholar : | |
|
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud Å, et al: Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 139:488–497. 2012. View Article : Google Scholar : | |
|
Weber BN, Chi AW, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O and Bhandoola A: A critical role for TCF-1 in T-lineage specification and differentiation. Nature. 476:63–68. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Germar K, Dose M, Konstantinou T, Zhang J, Wang H, Lobry C, Arnett KL, Blacklow SC, Aifantis I, Aster JC and Gounari F: T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci USA. 108:20060–20065. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bray SJ and Gomez-Lamarca M: Notch after cleavage. Curr Opin Cell Biol. 51:103–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Jiang L, Zhong ML, Li JF, Li BS, Peng LJ, Dai YT, Cui BW, Yan TQ, Zhang WN, et al: Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 115:373–378. 2018. View Article : Google Scholar | |
|
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster JC: Activating mutations of NOTCH1 in human T cell acute lympho-blastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV, Colovai AI, Balbin M and Ferrando AA: CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia. 20:1279–1287. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bie De J, Demeyer S, Alberti-Servera L, Geerdens E, Segers H, Broux M, De Keersmaecker K, Michaux L, Vandenberghe P, Voet T, et al: Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia. 32:1358–1369. 2018. View Article : Google Scholar | |
|
Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, et al: Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 475:101–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fabbri G and Dalla-Favera R: The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 16:145–162. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, Nadeu F, Ordóñez GR, Rovira J, Clot G, Royo C, et al: Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia. 32:675–684. 2018. View Article : Google Scholar : | |
|
González-Rincón J, Méndez M, Gómez S, García JF, Martín P, Bellas C, Pedrosa L, Rodríguez-Pinilla SM, Camacho FI, Quero C, et al: Unraveling transformation of follicular lymphoma to diffuse large B-cell lymphoma. PLoS One. 14:e02128132019. View Article : Google Scholar : PubMed/NCBI | |
|
Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, et al: Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 119:1963–1971. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, et al: Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 17:1646–1651. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Zhang Q, Li D, Ching K, Zhang C, Zheng X, Ozeck M, Shi S, Li X, Wang H, et al: PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin Cancer Res. 21:1487–1496. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C, Raymond V, et al: Integrative clinical genomics of metastatic cancer. Nature. 548:297–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Westhoff B, Colaluca IN, D'Ario G, Donzelli M, Tosoni D, Volorio S, Pelosi G, Spaggiari L, Mazzarol G, Viale G, et al: Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA. 106:22293–22298. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, Leigh IM, Collisson EA, Gordon PB, Jakkula L, et al: Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci USA. 108:17761–17766. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et al: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 333:1154–1157. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al: The mutational landscape of head and neck squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, Cagan A, Murai K, Mahbubani K, Stratton MR, et al: Somatic mutant clones colonize the human esophagus with age. Science. 362:911–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, et al: Comprehensive genomic profiles of small cell lung cancer. Nature. 524:47–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ali SA, Justilien V, Jamieson L, Murray NR and Fields AP: Protein kinase Cι drives a NOTCH3-dependent stem-like phenotype in mutant KRAS lung adenocarcinoma. Cancer Cell. 29:367–378. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bhagat TD, Zou Y, Huang S, Park J, Palmer MB, Hu C, Li W, Shenoy N, Giricz O, Choudhary G, et al: Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J Biol Chem. 292:837–846. 2017. View Article : Google Scholar : | |
|
van Groningen T, Akogul N, Westerhout EM, Chan A, Hasselt NE, Zwijnenburg DA, Broekmans M, Stroeken P, Haneveld F, Hooijer GKJ, et al: A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun. 10:15302019. View Article : Google Scholar : PubMed/NCBI | |
|
Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G, Schwentner R, Smrzka O, Muehlbacher K, Aryee DN and Kovar H: EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res. 68:7100–7109. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, Basom R, Liggitt D, Eaton KD, Martins R, Poirier JT, et al: Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal. 12:pii: eaau2922. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Zhang Y, Jiang H, Zhu Y, Liu L, Feng W, Yang L, Wang Y and Li M: Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27Kip1 signaling pathway. FEBS Open Bio. 5:656–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Maraver A, Fernández-Marcos PJ, Herranz D, Muñoz-Martin M, Gomez-Lopez G, Cañamero M, Mulero F, Megías D, Sanchez-Carbayo M, Shen J, et al: Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell. 22:222–234. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al: Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 13:1203–1210. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Smith AJ, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I and Lowell S: Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells. 31:1511–1122. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Weng MT, Tsao PN, Lin HL, Tung CC, Change MC, Chang YT, Wong JM and Wei SC: Hes1 increases the invasion ability of colorectal cancer cells via the STAT3-MMP14 pathway. PLoS One. 10:e01443222015. View Article : Google Scholar : PubMed/NCBI | |
|
Jin S, Mutvei AP, Chivukula IV, Andersson ER, Ramsköld D, Sandberg R, Lee KL, Kronqvist P, Mamaeva V, Ostling P, et al: Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene. 32:4892–4902. 2013. View Article : Google Scholar | |
|
Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N and Eberhart CG: The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: A potential mechanism of therapeutic resistance. Clin Cancer Res. 16:6060–6070. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bonyadi Rad E, Hammerlindl H, Wels C, Popper U, Ravindran Menon D, Breiteneder H, Kitzwoegerer M, Hafner C, Herlyn M, Bergler H and Schaider H: Notch4 signaling induces a mesenchymal-epithelial-like transition in melanoma cells to suppress malignant behaviors. Cancer Res. 76:1690–1697. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Xu J, Liu B, He X, Zhou L, Hu X, Qiao F, Zhang A, Xu X, Zhang H, et al: IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer. Cell Death Differ. 25:330–339. 2018. View Article : Google Scholar | |
|
Hartman BH, Reh TA and Bermingham-McDonogh O: Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci USA. 107:15792–15797. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abelló G, Ibañes M, Neves J and Giraldez F: Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development. 141:2313–2324. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Gaykalova DA, Ochs MF, Mambo E, Arnaoutakis D, Liu Y, Loyo M, Agrawal N, Howard J, Li R, et al: Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74:1091–1104. 2014. View Article : Google Scholar : | |
|
Turley SJ, Cremasco V and Astarita JL: Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 15:669–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Valkenburg KC, de Groot AE and Pienta KJ: Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 15:366–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Östman A and Corvigno S: Microvascular mural cells in cancer. Trends Cancer. 4:838–848. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al: Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI | |
|
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T and Mittal V: The lung microenvironment: An important regulator of tumour growth and metastasis. Nat Rev Cancer. 19:9–31. 2019. View Article : Google Scholar : | |
|
Wang Z and Zöller M: Exosomes, metastases, and the miracle of cancer stem cell markers. Cancer Metastasis Rev. 38:259–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dotto GP: Multifocal epithelial tumors and field cancerization: Stroma as a primary determinant. J Clin Invest. 124:1446–1453. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Robbins J, Blondel BJ, Gallahan D and Callahan R: Mouse mammary tumor gene int-3: A member of the Notch gene family transforms mammary epithelial cells. J Virol. 66:2594–2599. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Peters G, Lee AE and Dickson C: Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumour virus. Nature. 320:628–631. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Shackleford GM, MacArthur CA, Kwan HC and Varmus HE: Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc Natl Acad Sci USA. 90:740–744. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: WNT and FGF gene clusters (review). Int J Oncol. 21:1269–1273. 2002.PubMed/NCBI | |
|
Lowther W, Wiley K, Smith GH and Callahan R: A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J Virol. 79:10093–10096. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, Jonkers J and Hilkens J: MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet. 39:759–769. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : | |
|
Morgan RG, Mortensson E and Williams AC: Targeting LGR5 in colorectal cancer: Therapeutic gold or too plastic. Br J Cancer. 118:1410–1418. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Estrach S, Ambler CA, Lo Celso C, Hozumi K and Watt FM: Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development. 133:4427–4438. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H, Zhang S, Li N, Song J, Fang Y, et al: WNT/NOTCH pathway is essential for the maintenance and expansion of human MGE progenitors. Stem Cell Reports. 12:934–949. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, et al: Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 18:572–579. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Högström J, Heino S, Kallio P, Lähde M, Leppänen VM, Balboa D, Wiener Z and Alitalo K: Transcription factor PROX1 suppresses Notch pathway activation via the nucleosome remod-eling and deacetylase complex in colorectal cancer stem-like cells. Cancer Res. 78:5820–5832. 2018. | |
|
Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G and Gerhardt H: Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 16:70–82. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Li H, Hong SH, Piszczek GP, Chen W and Rodgers GP: Olfactomedin 4 deletion induces colon adenocarcinoma in ApcMin/+ mice. Oncogene. 35:5237–5247. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Giancotti FG: Mechanisms governing metastatic dormancy and reactivation. Cell. 155:750–764. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI | |
|
Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE and Band V: The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 62:4736–4745. 2002.PubMed/NCBI | |
|
De Jaime-Soguero A, Aulicino F, Ertaylan G, Griego A, Cerrato A, Tallam A, Del Sol A, Cosma MP and Lluis F: Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genet. 13:e10066822017. View Article : Google Scholar : PubMed/NCBI | |
|
Srinivasan T, Walters J, Bu P, Than EB, Tung KL, Chen KY, Panarelli N, Milsom J, Augenlicht L, Lipkin SM and Shen X: NOTCH signaling regulates asymmetric cell fate of fast- and slow-cycling colon cancer-initiating cells. Cancer Res. 76:3411–3421. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Germann M, Xu H, Malaterre J, Sampurno S, Huyghe M, Cheasley D, Fre S and Ramsay RG: Tripartite interactions between Wnt signaling, Notch and Myb for stem/progenitor cell functions during intestinal tumorigenesis. Stem Cell Res. 13:355–366. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mourao L, Jacquemin G, Huyghe M, Nawrocki WJ, Menssouri N, Servant N and Fre S: Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells. Sci Rep. 9:8882019. View Article : Google Scholar : PubMed/NCBI | |
|
Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
De Palma M, Biziato D and Petrova TV: Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yunus M, Jansson PJ, Kovacevic Z, Kalinowski DS and Richardson DR: Tumor-induced neoangiogenesis and receptor tyrosine kinases-Mechanisms and strategies for acquired resistance. Biochim Biophys Acta Gen Subj. 1863:1217–1225. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Potente M, Gerhardt H and Carmeliet P: Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Goel HL and Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bridges E, Oon CE and Harris A: Notch regulation of tumor angiogenesis. Future Oncol. 7:569–588. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, Espinet E, Herpel E, Menuchin A, Chang-Claude J, et al: Endothelial Notch1 activity facilitates metastasis. Cancer Cell. 31:355–367. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, Leibing T, Mohammadi MM, Heineke J, Sticht C, et al: Hepatic endothelial Notch activation protects against liver metastasis by regulating endothelial-tumor cell adhesion independent of angiocrine signaling. Cancer Res. 79:598–610. 2019. View Article : Google Scholar | |
|
Radtke F, MacDonald HR and Tacchini-Cottier F: Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol. 13:427–437. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lobry C, Oh P, Mansour MR, Look AT and Aifantis I: Notch signaling: Switching an oncogene to a tumor suppressor. Blood. 123:2451–2459. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Amsen D, Helbig C and Backer RA: Notch in T cell differentiation: all things considered. Trends Immunol. 36:802–814. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Charbonnier LM, Wang S, Georgiev P, Sefik E and Chatila TA: Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol. 16:1162–1173. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, et al: Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70:4840–4849. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Wang J, Zhang M, Xuan Q, Wang Z, Lian X and Zhang Q: Jagged1 promotes aromatase inhibitor resistance by modulating tumor-associated macrophage differentiation in breast cancer patients. Breast Cancer Res Treat. 166:95–107. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rashedi I, Gómez-Aristizábal A, Wang XH, Viswanathan S and Keating A: TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via Notch signaling. Stem Cells. 35:265–275. 2017. View Article : Google Scholar | |
|
Cahill EF, Tobin LM, Carty F, Mahon BP and English K: Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther. 6:192015. View Article : Google Scholar : PubMed/NCBI | |
|
Kared H, Adle-Biassette H, Foïs E, Masson A, Bach JF, Chatenoud L, Schneider E and Zavala F: Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through Notch signaling. Immunity. 25:823–834. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ting HA, de Almeida Nagata D, Rasky AJ, Malinczak CA, Maillard IP, Schaller MA and Lukacs NW: Notch ligand Delta-like 4 induces epigenetic regulation of Treg cell differentiation and function in viral infection. Mucosal Immunol. 11:1524–1536. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 564:268–272. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U and Bondesson M: Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell. 9:617–628. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med. 38:3–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Grazioli P, Felli MP, Screpanti I and Campese AF: The mazy case of Notch and immunoregulatory cells. J Leukoc Biol. 102:361–368. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond). 133:953–970. 2019. View Article : Google Scholar | |
|
Yang Z, Qi Y, Lai N, Zhang J, Chen Z, Liu M, Zhang W, Luo R and Kang S: Notch1 signaling in melanoma cells promoted tumor-induced immunosuppression via upregulation of TGF-β1. J Exp Clin Cancer Res. 37:12018. View Article : Google Scholar | |
|
Mao L, Zhao ZL, Yu GT, Wu L, Deng WW, Li YC, Liu JF, Bu LL, Liu B, Kulkarni AB, et al: γ-Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int J Cancer. 142:999–1009. 2018. View Article : Google Scholar | |
|
El-Khoueiry AB, Desai J, Iyer SP, Gadgeel SM, Ramalingam SS, Horn L, LoRusso P, Bajaj G, Kollia G, Qi Z, et al: A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. J Clin Oncol. 36(15 Suppl): S25152018. View Article : Google Scholar | |
|
Massard C, Azaro A, Soria JC, Lassen U, Le Tourneau C, Sarker D, Smith C, Ohnmacht U, Oakley G, Patel BKR, et al: First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Ann Oncol. 29:1911–1917. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, et al: Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 11:pii: eaau6246. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Messersmith WA, Shapiro GI, Cleary JM, Jimeno A, Dasari A, Huang B, Shaik MN, Cesari R, Zheng X, Reynolds JM, et al: A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clin Cancer Res. 21:60–67. 2015. View Article : Google Scholar | |
|
Kummar S, O'Sullivan Coyne G, Do KT, Turkbey B, Meltzer PS, Polley E, Choyke PL, Meehan R, Vilimas R, Horneffer Y, et al: Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J Clin Oncol. 35:1561–1569. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tolcher AW, Messersmith WA, Mikulski SM, Papadopoulos KP, Kwak EL, Gibbon DG, Patnaik A, Falchook GS, Dasari A, Shapiro GI, et al: Phase I study of RO4929097, a gamma secre-tase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. 30:2348–2353. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, Almhanna K, Kim R, Valone T, Jump H and Sullivan D: A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer. 48:997–1003. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, Yu M, Sundaresan TK, Licausi JA, Desai R, et al: HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 537:102–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Diluvio G, Del Gaudio F, Giuli MV, Franciosa G, Giuliani E, Palermo R, Besharat ZM, Pignataro MG, Vacca A, d'Amati G, et al: NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest. Oncogenesis. 7:422018. View Article : Google Scholar : PubMed/NCBI | |
|
Yao J, Qian C, Shu T, Zhang X, Zhao Z and Liang Y: Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/β-catenin. Cancer Biol Ther. 14:833–839. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Smith DC, Eisenberg PD, Manikhas G, Chugh R, Gubens MA, Stagg RJ, Kapoun AM, Xu L, Dupont J and Sikic B: A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res. 20:6295–6303. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chiorean EG, LoRusso P, Strother RM, Diamond JR, Younger A, Messersmith WA, Adriaens L, Liu L, Kao RJ, DiCioccio AT, et al: A phase I first-in-human study of enoticumab (REGN421), a fully human Delta-like ligand 4 (DLL4) monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 21:2695–2703. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Falchook GS, Dowlati A, Naing A, Gribbin MJ, Jenkins DW, Chang LL, Lai DW and Smith DC: Phase I study of MEDI0639 in patients with advanced solid tumors. J Clin Oncol. 33(15 Suppl): S30242015. View Article : Google Scholar | |
|
Ferrarotto R, Eckhardt G, Patnaik A, LoRusso P, Faoro L, Heymach JV, Kapoun AM, Xu L and Munster P: A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol. 29:1561–1568. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yen WC, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B, Henner WR, Meisner R, Sato A, Shah J, et al: Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 21:2084–2095. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Smith DC, Chugh R, Patnaik A, Papadopoulos KP, Wang M, Kapoun AM, Xu L, Dupont J, Stagg RJ and Tolcher A: A phase 1 dose escalation and expansion study of Tarextumab (OMP-59R5) in patients with solid tumors. Invest New Drugs. 37:722–730. 2019. View Article : Google Scholar : | |
|
Beck A, Goetsch L, Dumontet C and Corvaïa N: Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lambert JM and Berkenblit A: Antibody-Drug conjugates for cancer treatment. Annu Rev Med. 69:191–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carter PJ and Lazar GA: Next generation antibody drugs: Pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov. 17:197–223. 2018. View Article : Google Scholar | |
|
June CH, O'Connor RS, Kawalekar OU, Ghassemi S and Milone MC: CAR T cell immunotherapy for human cancer. Science. 359:1361–1365. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, Desai R, Escarpe PA, Hampl J, Laysang A, et al: A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 7:302ra1362015. View Article : Google Scholar : PubMed/NCBI | |
|
Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, Byers LA, Johnson ML, Burris HA III, Robert F, et al: Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 18:42–51. 2017. View Article : Google Scholar : | |
|
Carbone DP, Morgensztern D, Le Moulec S, Santana-Davila R, Ready N, Hann CL, Glisson BS, Dowlati A, Rudin CM, Lally S, et al: Efficacy and safety of rovalpituzumab tesirine in patients With DLL3-expressing, ≥ 3rd line small cell lung cancer: Results from the phase 2 TRINITY study. J Clin Oncol. 36(15 Suppl): S85072018. View Article : Google Scholar | |
|
Rosen LS, Wesolowski R, Baffa R, Liao KH, Hua SY, Gibson BL, Pirie-Shepherd S and Tolcher AW: A phase I, dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest New Drugs. Mar 18–2019.Epub ahead of print. PubMed/NCBI | |
|
Smit MAD, Borghaei H, TOwonikoko TK, Hummel HD, Johnson ML, Champiat S, Salgia R, Udagawa H, Boyer MJ and Govindan R: Phase 1 study of AMG 757, a half-life extended bispecific T cell engager (BiTE) antibody construct targeting DLL3, in patients with small cell lung cancer (SCLC). J Clin Oncol. 37(15 Suppl): TPS85772019. | |
|
Li Y, Hickson JA, Ambrosi DJ, Haasch DL, Foster-Duke KD, Eaton LJ, DiGiammarino EL, Panchal SC, Jiang F, Mudd SR, et al: ABT-165, a dual variable domain immunoglobulin (DVD-Ig) targeting DLL4 and VEGF, demonstrates superior efficacy and favorable safety profiles in preclinical models. Mol Cancer Ther. 17:1039–1050. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jimeno A, Moore KN, Gordon M, Chugh R, Diamond JR, Aljumaily R, Mendelson D, Kapoun AM, Xu L, Stagg R and Smith DC: A first-in-human phase 1a study of the bispecific anti-DLL4/anti-VEGF antibody navicixizumab (OMP-305B83) in patients with previously treated solid tumors. Invest New Drugs. 37:461–472. 2019. View Article : Google Scholar | |
|
Hu S, Fu W, Li T, Yuan Q, Wang F, Lv G, Lv Y, Fan X, Shen Y, Lin F, et al: Antagonism of EGFR and Notch limits resistance to EGFR inhibitors and radiation by decreasing tumor-initiating cell frequency. Sci Transl Med. 9:pii: eaag0339. 2017. View Article : Google Scholar | |
|
Fu W, Lei C, Yu Y, Liu S, Li T, Lin F, Fan X, Shen Y, Ding M, Tang Y, et al: EGFR/Notch antagonists enhance the response to inhibitors of the PI3K-Akt pathway by decreasing tumor-initiating cell frequency. Clin Cancer Res. 25:2835–2847. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Byers LA, Chiappori A and Smit MAD: Phase 1 study of AMG 119, a chimeric antigen receptor (CAR) T cell therapy targeting DLL3, in patients with relapsed/refractory small cell lung cancer (SCLC). J Clin Oncol. 37(15 Suppl): TPS85762019. | |
|
Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, et al: Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 11:pii: eaav0891. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, et al: Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 12 trial. Lancet Oncol. 20:31–42. 2019. View Article : Google Scholar | |
|
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, et al: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 380:45–56. 2019. View Article : Google Scholar | |
|
Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, Gökbuget N, O'Brien S, Wang K, Wang T, et al: Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 375:740–753. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Horwitz S, O'Connor OA, Pro B, Illidge T, Fanale M, Advani R, Bartlett NL, Christensen JH, Morschhauser F, Domingo-Domenech E, et al: Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet. 393:229–240. 2019. View Article : Google Scholar : | |
|
Tilly H, Morschhauser F, Bartlett NL, Mehta A, Salles G, Haioun C, Munoz J, Chen AI, Kolibaba K, Lu D, et al: Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: An open-label, non-randomised, phase 1b-2 study. Lancet Oncol. 20:998–1010. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Diéras V, Guardino E, et al: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 367:1783–1791. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, Shimizu C, Shimoi T, Kuboki Y, Matsubara N, et al: Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: A phase 1 dose-escalation study. Lancet Oncol. 18:1512–1522. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, Macpherson IR, Boni V, Rolfo C, de Vries EGE, et al: Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 20:1124–1135. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, et al: Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international phase I multicenter trial. Neuro Oncol. 21:106–114. 2019. View Article : Google Scholar | |
|
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, Bauer TM, Ruiz-Soto R and Birrer MJ: Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: A phase I expansion study. J Clin Oncol. 35:1112–1118. 2017. View Article : Google Scholar | |
|
Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, Raitano A, Nadell R, Liu W, Lortie DR, et al: Enfortumab vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76:3003–3013. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O'Shaughnessy J, Moroose RL, Santin AD, Abramson VG, et al: Sacituzumab govitecanhziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 380:741–751. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Merlino G, Fiascarelli A, Bigioni M, Bressan A, Carrisi C, Bellarosa D, Salerno M, Bugianesi R, Manno R, Bernadó Morales C, et al: MEN1309/OBT076, a first-in-class antibody-drug conjugate targeting CD205 in solid tumors. Mol Cancer Ther. 18:1533–1543. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan X, Wang B, Li Z, Li J, Wang H, Chen L, Jiang H, Wu M, Xiao J, Peng X, et al: Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J Clin Oncol. 37(15 Suppl): S25092019. View Article : Google Scholar | |
|
García-Alonso S, Ocaña A and Pandiella A: Resistance to antibody-drug conjugates. Cancer Res. 78:2159–2165. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shah NN and Fry TJ: Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Singal G, Miller PG, Agarwala V, Li G, Kaushik G, Backenroth D, Gossai A, Frampton GM, Torres AZ, Lehnert EM, et al: Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA. 321:1391–1399. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51:202–206. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rubinstein JC, Nicolson NG and Ahuja N: Next-generation sequencing in the management of gastric and esophageal cancers. Surg Clin North Am. 99:511–527. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hirsch FR, Suda K, Wiens J and Bunn PA Jr: New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 388:1012–1024. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, Drilon A, Kris MG, Rudin CM, Schultz N, et al: Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res. 25:1063–1069. 2019. View Article : Google Scholar | |
|
Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar AL, Kirchner M, Leichsenring J, Lier A, von Winterfeld M, et al: Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 144:848–858. 2019. View Article : Google Scholar | |
|
Schneider G: Automating drug discovery. Nat Rev Drug Discov. 17:97–113. 2018. View Article : Google Scholar | |
|
Katoh M: Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol. 16:105–122. 2019. View Article : Google Scholar | |
|
Somashekhar SP, Sepúlveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, Rauthan A, Arun Kumar N, Patil P, Rhee K, et al: Watson for oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board. Ann Oncol. 29:418–423. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Paley S and Karp PD: The MultiOmics explainer: Explaining omics results in the context of a pathway/genome database. BMC Bioinformatics. 20:3992019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, Huang CS, Shen D and Chen CM: Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 6:244542016. View Article : Google Scholar : PubMed/NCBI | |
|
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM and Thrun S: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, et al: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 25:954–961. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dascalu A and David EO: Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. EBioMedicine. 43:107–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, Ohtsuka K, Urushibara F, Kataoka S, Ogawa Y, et al: Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: A prospective study. Ann Intern Med. 169:357–366. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Aboutalib SS, Mohamed AA, Berg WA, Zuley ML, Sumkin JH and Wu S: Deep learning to distinguish recalled but benign mammography images in breast cancer screening. Clin Cancer Res. 24:5902–5909. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N and Tsirigos A: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 24:1559–1567. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, et al: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 25:1054–1056. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss, Silva V, Busam KJ, Brogi E, Reuter VE, Klimstra DS and Fuchs TJ: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 25:1301–1309. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hekler A, Utikal JS, Enk AH, Solass W, Schmitt M, Klode J, Schadendorf D, Sondermann W, Franklin C, Bestvater F, et al: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 118:91–96. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Topol EJ: High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 25:44–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Bae Y, Kasimir-Bauer S, Tang R, Chen J, Ren G, Yuan M, Esposito M, Li W, Wei Y, et al: Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell. 32:731–747.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li DD, Zhao CH, Ding HW, Wu Q, Ren TS, Wang J, Chen CQ and Zhao QC: A novel inhibitor of ADAM17 sensitizes colorectal cancer cells to 5-Fluorouracil by reversing Notch and epithelial-mesenchymal transition in vitro and in vivo. Cell Prolif. 51:e124802018. View Article : Google Scholar : PubMed/NCBI | |
|
Weber D, Lehal R, Frismantas V, Bourquin J, Bauer M, Murone M and Radtke F: 411P-Pharmacological activity of CB-103-an oral pan-NOTCH inhibitor with a novel mode of action. Ann Oncol. 28(Suppl 5): v122–v141. 2017. View Article : Google Scholar | |
|
Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL and Bradner JE: Direct inhibition of the NOTCH transcription factor complex. Nature. 462:182–188. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sano R, Krytska K, Larmour CE, Raman P, Martinez D, Ligon GF, Lillquist JS, Cucchi U, Orsini P, Rizzi S, et al: An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci Transl Med. 11:pii: eaau9732. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, Vredevoogd DW, Kemper K, Kuilman T, Song JY, et al: Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med. 24:203–212. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tao Y, Wang R, Lai Q, Wu M, Wang Y, Jiang X, Zeng L, Zhou S, Li Z, Yang T, et al: Targeting of DDR1 with antibody-drug conjugates has antitumor effects in a mouse model of colon carcinoma. Mol Oncol. 13:1855–1873. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG, Stelte-Ludwig B, Hammer S, Greven S, Schuhmacher J, et al: Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 76:6331–6339. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Surguladze D, Pennello A, Ren X, Mack T, Rigby A, Balderes P, Navarro E, Amaladas N, Eastman S, Topper M, et al: LY3076226, a novel anti-FGFR3 antibody drug conjugate exhibits potent and durable anti-tumor activity in tumor models harboring FGFR3 mutations or fusions. Cancer Res. 79(13 Suppl): S48352019. | |
|
Rudra-Ganguly N, Challita-Eid PM, Lowe C, Mattie M, Moon SJ, Mendelsohn BA, Leavitt M, Virata C, A Verlinsky A, Capo L, et al: AGS62P1, a novel site-specific antibody drug conjugate targeting FLT3 exhibits potent anti-tumor activity regardless of FLT3 kinase activation status. Cancer Res. 76(14 Suppl): S5742016. | |
|
Avilés P, Domínguez JM, Guillén MJ, Muñoz-Alonso MJ, Mateo C, Rodriguez-Acebes R, Molina-Guijarro JM, Francesch A, Martínez-Leal JF, Munt S, et al: MI130004, a novel antibody-drug conjugate combining trastuzumab with a molecule of marine origin, shows outstanding in iivo activity against HER2-expressing tumors. Mol Cancer Ther. 17:786–794. 2018. View Article : Google Scholar | |
|
Koganemaru S, Kuboki Y, Koga Y, Kojima T, Yamauchi M, Maeda N, Kagari T, Hirotani K, Yasunaga M, Matsumura Y and Doi T: U3-1402, a novel HER3-targeting antibody-drug conjugate, for the treatment of colorectal cancer. Mol Cancer Ther. 18:2043–2050. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Abrams T, Connor A, Fanton C, Cohen SB, Huber T, Miller K, Hong EE, Niu X, Kline J, Ison-Dugenny M, et al: Preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin Cancer Res. 24:4297–4308. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Strickler JH, Weekes CD, Nemunaitis J, Ramanathan RK, Heist RS, Morgensztern D, Angevin E, Bauer TM, Yue H, Motwani M, et al: First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 36:3298–3306. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sachdev JC, Maitland ML, Sharma M, Moreno V, Boni V, Kummar S, Stringer-Reasor EM, Forero-Torres A, Lakhani NJ, Gibson B, et al: PF-06647020 (PF-7020), an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients (pts) with advanced solid tumors: Results of a phase I dose escalation and expansion study. J Clin Oncol. 36(15-Suppl): S55652018. View Article : Google Scholar | |
|
Nguyen M, Miyakawa S, Kato J, Mori T, Arai T, Armanini M, Gelmon K, Yerushalmi R, Leung S, Gao D, et al: Preclinical efficacy and safety assessment of an antibody-drug conjugate targeting the c-RET proto-oncogene for breast carcinoma. Clin Cancer Res. 21:5552–5562. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yao HP, Feng L, Suthe SR, Chen LH, Weng TH, Hu CY, Jun ES, Wu ZG, Wang WL, Kim SC, et al: Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy. J Immunother Cancer. 7:752019. View Article : Google Scholar : PubMed/NCBI | |
|
Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ, Kosasih PL, Rader C and Riddell SR: Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res. 3:206–216. 2015. View Article : Google Scholar : | |
|
Trudel S, Lendvai N, Popat R, Voorhees PM, Reeves B, Libby EN, Richardson PG, Hoos A, Gupta I, Bragulat V, et al: Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 9:372019. View Article : Google Scholar : PubMed/NCBI | |
|
Godwin CD, Gale RP and Walter RB: Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 31:1855–1868. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Socinski MA, Kaye FJ, Spigel DR, Kudrik FJ, Ponce S, Ellis PM, Majem M, Lorigan P, Gandhi L, Gutierrez ME, et al: Phase 1/2 study of the CD56-targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease. Clin Lung Cancer. 18:68–76.e2. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, Plummer R, Jones RH, Nielsen D, Windfeld K, et al: Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): A first-in-human, multicentre, phase 1-2 trial. Lancet Oncol. 20:383–393. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dotan E, Cohen SJ, Starodub AN, Lieu CH, Messersmith WA, Simpson PS, Guarino MJ, Marshall JL, Goldberg RM, Hecht JR, et al: Phase I/II trial of labetuzumab govitecan (anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J Clin Oncol. 35:3338–3346. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Foletti D, Liu X, Ding S, Melton Witt J, Hasa-Moreno A, Rickert M, Holz C, Aschenbrenner L, Yang AH, et al: Targeting CLDN18.2 by CD3 bispecific and ADC modalities for the treatments of gastric and pancreatic cancer. Sci Rep. 9:84202019. View Article : Google Scholar : PubMed/NCBI | |
|
Bhakta S, Crocker LM, Chen Y, Hazen M, Schutten MM, Li D, Kuijl C, Ohri R, Zhong F, Poon KA, et al: An anti-GDNF family receptor alpha 1 (GFRA1) antibody-drug conjugate for the treatment of hormone receptor-positive breast cancer. Mol Cancer Ther. 17:638–649. 2018. View Article : Google Scholar | |
|
Ott PA, Pavlick AC, Johnson DB, Hart LL, Infante JR, Luke JJ, Lutzky J, Rothschild NE, Spitler LE, Cowey CL, et al: A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer. 125:1113–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q and Carmon KS: LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol Cancer Ther. 15:1580–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Purcell JW, Tanlimco SG, Hickson J, Fox M, Sho M, Durkin L, Uziel T, Powers R, Foster K, McGonigal T, et al: LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 78:4059–4072. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Willuda J, Linden L, Lerchen HG, Kopitz C, Stelte-Ludwig B, Pena C, Lange C, Golfier S, Kneip C, Carrigan PE, et al: Preclinical antitumor efficacy of BAY 1129980-a novel auristatin-based anti-C4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer. Mol Cancer Ther. 16:893–904. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Golfier S, Kopitz C, Kahnert A, Heisler I, Schatz CA, Stelte-Ludwig B, Mayer-Bartschmid A, Unterschemmann K, Bruder S, Linden L, et al: Anetumab ravtansine: A novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther. 13:1537–1548. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Banerjee S, Oza AM, Birrer MJ, Hamilton EP, Hasan J, Leary A, Moore KN, Mackowiak-Matejczyk B, Pikiel J, Ray-Coquard I, et al: Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann Oncol. 29:917–923. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L, Van Epps HA, et al: SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 13:2991–3000. 2014. View Article : Google Scholar : PubMed/NCBI |