1
|
Fisher RS, Acevedo C, Arzimanoglou A,
Bogacz A, Cross JH, Elger CE, Engel J Jr, Forsgren L, French JA,
Glynn M, et al: ILAE official report: A practical clinical
definition of epilepsy. Epilepsia. 55:475–482. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Engel J Jr: Mesial temporal lobe epilepsy:
What have we learned? Neuroscientist. 7:340–352. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shibley H and Smith BN:
Pilocarpine-induced status epilepticus results in mossy fiber
sprouting and spontaneous seizures in C57BL/6 and CD-1 mice.
Epilepsy Res. 49:109–120. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Morimoto K, Fahnestock M and Racine RJ:
Kindling and status epilepticus models of epilepsy: Rewiring the
brain. Prog Neurobiol. 73:1–60. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Friedman WJ: Proneurotrophins, seizures,
and neuronal apoptosis. Neuroscientist. 16:244–252. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Baram TZ, Jensen FE and Brooks-Kayal A:
Does acquired epileptogenesis in the immature brain require
neuronal death. Epilepsy Curr. 11:21–26. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Varvel NH, Neher JJ, Bosch A, Wang W,
Ransohoff RM, Miller RJ and Dingledine R: Infiltrating monocytes
promote brain inflammation and exacerbate neuronal damage after
status epilepticus. Proc Natl Acad Sci USA. 113:E5665–E5674. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hung SY, Huang WP, Liou HC and Fu WM: LC3
overexpression reduces Aβ neurotoxicity through increasing α7nAchR
expression and autophagic activity in neurons and mice.
Neuropharmacology. 93:243–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vieira M, Fernandes J, Carreto L,
Anuncibay-Soto B, Santos M, Han J, Fernández-López A, Duarte CB,
Carvalho AL and Santos AE: Ischemic insults induce necroptotic cell
death in hippocampal neurons through the up-regulation of
endogenous RIP3. Neurobiol Dis. 68:26–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xu M and Zhang HL: Death and survival of
neuronal and astrocytic cells in ischemic brain injury: A role of
autophagy. Acta Pharmacol Sin. 32:1089–1099. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hochfeld M, Lamecker H, Thomale UW, Schulz
M, Zachow S and Haberl H: Frame-based cranial reconstruction. J
Neurosurg Pediatr. 13:319–323. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ravikumar B, Vacher C, Berger Z, Davies
JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ and
Rubinsztein DC: Inhibition of mTOR induces autophagy and reduces
toxicity of polyglutamine expansions in fly and mouse models of
Huntington disease. Nat Genet. 36:585–595. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hoeffer CA and Klann E: mTOR signaling: At
the crossroads of plasticity, memory and disease. Trends Neurosci.
33:67–75. 2010. View Article : Google Scholar
|
14
|
Costa-Mattioli M, Sossin WS, Klann E and
Sonenberg N: Translational control of long-lasting synaptic
plasticity and memory. Neuron. 61:10–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM,
Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR
signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003.
2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Russell RC, Tian Y, Yuan H, Park HW, Chang
YY, Kim J, Kim H, Neufeld TP, Dillin A and Guan KL: ULK1 induces
autophagy by phosphorylating Beclin-1 and activating VPS34 lipid
kinase. Nat Cell Biol. 15:741–750. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rubinsztein DC, Codogno P and Levine B:
Autophagy modulation as a potential therapeutic target for diverse
diseases. Nat Rev Drug Discov. 11:709–730. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Harris H and Rubinsztein DC: Control of
autophagy as a therapy for neurodegenerative disease. Nat Rev
Neurol. 8:108–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pankiv S, Clausen TH, Lamark T, Brech A,
Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T:
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of
ubiquitinated protein aggregates by autophagy. J Biol Chem.
282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hara T, Nakamura K, Matsui M, Yamamoto A,
Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I,
Okano H and Mizushima N: Suppression of basal autophagy in neural
cells causes neurodegenerative disease in mice. Nature.
441:885–889. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Menzies FM, Fleming A, Caricasole A, Bento
CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez
Sanchez M, Karabiyik C, et al: Autophagy and neurodegeneration:
Pathogenic mechanisms and therapeutic opportunities. Neuron.
93:1015–1034. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pasquali L, Longone P, Isidoro C, Ruggieri
S, Paparelli A and Fornai F: Autophagy, lithium, and amyotrophic
lateral sclerosis. Muscle Nerve. 40:173–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fornai F, Longone P, Ferrucci M, Lenzi P,
Isidoro C, Ruggieri S and Paparelli A: Autophagy and amyotrophic
lateral sclerosis: The multiple roles of lithium. Autophagy.
4:527–530. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hwang JY, Gertner M, Pontarelli F,
Court-Vazquez B, Bennett MV, Ofengeim D and Zukin RS: Global
ischemia induces lysosomal-mediated degradation of mTOR and
activation of autophagy in hippocampal neurons destined to die.
Cell Death Differ. 24:317–329. 2017. View Article : Google Scholar :
|
26
|
Hosseinzadeh M, Nikseresht S, Khodagholi
F, Naderi N and Maghsoudi N: Cannabidiol post-treatment alleviates
rat epileptic-related behaviors and activates hippocampal cell
autophagy pathway along with antioxidant defense in chronic phase
of pilocarpine-induced seizure. J Mol Neurosci. 58:432–440. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Soltesz I, Alger BE, Kano M, Lee SH,
Lovinger DM, Ohno-Shosaku T and Watanabe M: Weeding out bad waves:
Towards selective cannabinoid circuit control in epilepsy. Nat Rev
Neurosci. 16:264–277. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Regehr WG, Carey MR and Best AR:
Activity-dependent regulation of synapses by retrograde messengers.
Neuron. 63:154–170. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jansen EM, Haycock DA, Ward SJ and Seybold
VS: Distribution of cannabinoid receptors in rat brain determined
with aminoalkylindoles. Brain Res. 575:93–102. 1992. View Article : Google Scholar : PubMed/NCBI
|
30
|
Muñoz-Luque J, Ros J, Fernández-Varo G,
Tugues S, Morales-Ruiz M, Alvarez CE, Friedman SL, Arroyo V and
Jiménez W: Regression of fibrosis after chronic stimulation of
cannabinoid CB2 receptor in cirrhotic rats. J Pharmacol Exp Ther.
324:475–483. 2008. View Article : Google Scholar
|
31
|
Galiègue S, Mary S, Marchand J, Dussossoy
D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G and
Casellas P: Expression of central and peripheral cannabinoid
receptors in human immune tissues and leukocyte subpopulations. Eur
J Biochem. 232:54–61. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li Y and Kim J: Neuronal expression of CB2
cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience.
311:253–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lanciego JL, Barroso-Chinea P, Rico AJ,
Conte-Perales L, Callén L, Roda E, Gómez-Bautista V, López IP,
Lluis C, Labandeira-García JL and Franco R: Expression of the mRNA
coding the cannabinoid receptor 2 in the pallidal complex of Macaca
fascicularis. J Psychopharmacol. 25:97–104. 2011. View Article : Google Scholar
|
34
|
Viscomi MT, Oddi S, Latini L, Pasquariello
N, Florenzano F, Bernardi G, Molinari M and Maccarrone M: Selective
CB2 receptor agonism protects central neurons from remote
axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci.
29:4564–4570. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim J and Li Y: Chronic activation of CB2
cannabinoid receptors in the hippocampus increases excitatory
synaptic transmission. J Physiol. 593:871–886. 2015. View Article : Google Scholar :
|
36
|
Stempel AV, Stumpf A, Zhang HY, Özdoğan T,
Pannasch U, Theis AK, Otte DM, Wojtalla A, Rácz I, Ponomarenko A,
et al: Cannabinoid type 2 receptors mediate a cell type-specific
plasticity in the hippocampus. Neuron. 90:795–809. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sugaya Y, Yamazaki M, Uchigashima M,
Kobayashi K, Watanabe M, Sakimura K and Kano M: Crucial roles of
the endocannabinoid 2-arachidonoylglycerol in the suppression of
epileptic seizures. Cell Rep. 16:1405–1415. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu Q and Wang H: The spatiotemporal
expression changes of CB2R in the hippocampus of rats following
pilocarpine-induced status epilepticus. Epilepsy Res. 148:8–16.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Curia G, Longo D, Biagini G, Jones RS and
Avoli M: The pilocarpine model of temporal lobe epilepsy. J
Neurosci Methods. 172:143–157. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Racine RJ: Modification of seizure
activity by electrical stimulation. II. Motor seizure.
Electroencephalogr Clin Neurophysiol. 32:281–294. 1972. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li X, Lou X, Xu S, Wang Q, Shen M and Miao
J: Knockdown of miR-372 inhibits nerve cell apoptosis induced by
spinal cord ischemia/reperfusion injury via enhancing autophagy by
up-regulating Beclin-1. J Mol Neurosci. 66:437–444. 2018.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Salminen A, Kaarniranta K, Kauppinen A,
Ojala J, Haapasalo A, Soininen H and Hiltunen M: Impaired autophagy
and APP processing in Alzheimer's disease: The potential role of
Beclin 1 interactome. Prog Neurobiol. 106-107:33–54. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Fornai F, Longone P, Cafaro L,
Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spalloni A,
Bellio N, Lenzi P, et al: Lithium delays progression of amyotrophic
lateral sclerosis. Proc Natl Acad Sci USA. 105:2052–2057. 2008.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Calderó J, Brunet N, Tarabal O, Piedrafita
L, Hereu M, Ayala V and Esquerda JE: Lithium prevents excitotoxic
cell death of motoneurons in organotypic slice cultures of spinal
cord. Neuroscience. 165:1353–1369. 2010. View Article : Google Scholar
|
45
|
Macias M, Blazejczyk M, Kazmierska P,
Caban B, Skalecka A, Tarkowski B, Rodo A, Konopacki J and Jaworski
J: Spatiotemporal characterization of mTOR kinase activity
following kainic acid induced status epilepticus and analysis of
rat brain response to chronic rapamycin treatment. PLoS One.
8:e644552013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth
KA and Zhang J: Kainic acid induces early and transient autophagic
stress in mouse hippocampus. Neurosci Lett. 414:57–60. 2007.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Cao L, Xu J, Lin Y, Zhao X, Liu X and Chi
Z: Autophagy is upregulated in rats with status epilepticus and
partly inhibited by Vitamin E. Biochem Biophys Res Commun.
379:949–953. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Al Mansouri S, Ojha S, Al Maamari E, Al
Ameri M, Nurulain SM and Bahi A: The cannabinoid receptor 2
agonist, β-caryophyllene, reduced voluntary alcohol intake and
attenuated ethanol-induced place preference and sensitivity in
mice. Pharmacol Biochem Behav. 124:260–268. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Katsuyama S, Mizoguchi H, Kuwahata H,
Komatsu T, Nagaoka K, Nakamura H, Bagetta G, Sakurada T and
Sakurada S: Involvement of peripheral cannabinoid and opioid
receptors in β-caryophyllene-induced antinociception. Eur J Pain.
17:664–675. 2013. View Article : Google Scholar
|
50
|
Choi IY, Ju C, Anthony Jalin AM, Lee DI,
Prather PL and Kim WK: Activation of cannabinoid CB2
receptor-mediated AMPK/CREB pathway reduces cerebral ischemic
injury. Am J Pathol. 182:928–939. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Cheng Y, Dong Z and Liu S: β-Caryophyllene
ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through
CB2 receptor activation and the PPARγ pathway. Pharmacology.
94:1–12. 2014. View Article : Google Scholar
|
52
|
Wallace MJ, Martin BR and DeLorenzo RJ:
Evidence for a physiological role of endocannabinoids in the
modulation of seizure threshold and severity. Eur J Pharmacol.
452:295–301. 2002. View Article : Google Scholar : PubMed/NCBI
|
53
|
Monory K, Massa F, Egertová M, Eder M,
Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, et
al: The endocannabinoid system controls key epileptogenic circuits
in the hippocampus. Neuron. 51:455–466. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ludányi A, Eross L, Czirják S, Vajda J,
Halász P, Watanabe M, Palkovits M, Maglóczky Z, Freund TF and
Katona I: Downregulation of the CB1 cannabinoid receptor and
related molecular elements of the endocannabinoid system in
epileptic human hippocampus. J Neurosci. 28:2976–2990. 2008.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Carletti F, Gambino G, Rizzo V, Ferraro G
and Sardo P: Cannabinoid and nitric oxide signaling interplay in
the modulation of hippocampal hyperexcitability: Study on
electro-physiological and behavioral models of temporal lobe
epilepsy in the rat. Neuroscience. 303:149–159. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Carletti F, Gambino G, Rizzo V, Ferraro G
and Sardo P: Neuronal nitric oxide synthase is involved in CB/TRPV1
signalling: Focus on control of hippocampal hyperexcitability.
Epilepsy Res. 138:18–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Huizenga MN, Wicker E, Beck VC and
Forcelli PA: Anticonvulsant effect of cannabinoid receptor agonists
in models of seizures in developing rats. Epilepsia. 58:1593–1602.
2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Rizzo V, Carletti F, Gambino G, Schiera G,
Cannizzaro C, Ferraro G and Sardo P: Role of CB2 receptors and cGMP
pathway on the cannabinoid-dependent antiepileptic effects in an in
vivo model of partial epilepsy. Epilepsy Res. 108:1711–1718. 2014.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Tchekalarova J, da Conceição Machado K,
Gomes Júnior AL, de Carvalho Melo Cavalcante AA, Momchilova A and
Tzoneva R: Pharmacological characterization of the cannabinoid
receptor 2 agonist, β-caryophyllene on seizure models in mice.
Seizure. 57:22–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Otabe H, Nibuya M, Shimazaki K, Toda H,
Suzuki G, Nomura S and Shimizu K: Electroconvulsive seizures
enhance autophagy signaling in rat hippocampus. Prog
Neuropsychopharmacol Biol Psychiatry. 50:37–43. 2014. View Article : Google Scholar
|
61
|
Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang
HJ, Gardner EL, Wu J and Xi ZX: Cannabinoid CB2 receptors modulate
midbrain dopamine neuronal activity and dopamine-related behavior
in mice. Proc Natl Acad Sci USA. 111:E5007–E5015. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gump JM and Thorburn A: Autophagy and
apoptosis: What's the connection? Trends Cell Biol. 21:387–392.
2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Leber B and Andrews DW: Closing in on the
link between apoptosis and autophagy. F1000. Biol Rep.
2:882010.
|
64
|
Linkermann A and Green DR: Necroptosis. N
Engl J Med. 370:455–465. 2014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Nikoletopoulou V, Markaki M, Palikaras K
and Tavernarakis N: Crosstalk between apoptosis, necrosis and
autophagy. Biochim Biophys Acta. 1833:3448–3459. 2013. View Article : Google Scholar : PubMed/NCBI
|
66
|
Lasarge CL and Danzer SC: Mechanisms
regulating neuronal excitability and seizure development following
mTOR pathway hyperactivation. Front Mol Neurosci. 7:182014.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Giorgi FS, Biagioni F, Lenzi P, Frati A
and Fornai F: The role of autophagy in epileptogenesis and in
epilepsy-induced neuronal alterations. J Neural Transm (Vienna).
122:849–862. 2015. View Article : Google Scholar
|
68
|
McMahon J, Huang X, Yang J, Komatsu M, Yue
Z, Qian J, Zhu X and Huang Y: Impaired autophagy in neurons after
disinhibition of mammalian target of rapamycin and its contribution
to epileptogenesis. J Neurosci. 32:15704–15714. 2012. View Article : Google Scholar : PubMed/NCBI
|