1
|
Pihlstrom BL, Michalowicz BS and Johnson
NW: Periodontal diseases. Lancet. 366:1809–1820. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Taba M Jr, Kinney J, Kim AS and Giannobile
WV: Diagnostic biomarkers for oral and periodontal diseases. Dent
Clin North Am. 49:551–571. vi2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Darveau RP: Periodontitis: A polymicrobial
disruption of host homeostasis. Nat Rev Microbiol. 8:481–490. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Heitz-Mayfield LJ and Lang NP: Surgical
and nonsurgical periodontal therapy. Learned and unlearned
concepts. Periodontol 2000. 62:218–231. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pellegrini G, Pagni G and Rasperini G:
Surgical approaches based on biological objectives: GTR versus GBR
techniques. Int J Dent. 2013:5215472013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xu X, Li X, Wang J, He XT, Sun HH and Chen
FM: Concise review: Periodontal tissue regeneration using stem
cells: Strategies and translational considerations. Stem Cells
Transl Med. 8:392–403. 2019. View Article : Google Scholar :
|
7
|
Venkataiah VS, Handa K, Njuguna MM,
Hasegawa T, Maruyama K, Nemoto E, Yamada S, Sugawara S, Lu L,
Takedachi M, et al: Periodontal regeneration by allogeneic
transplantation of adipose tissue derived multi-lineage progenitor
stem cells in vivo. Sci Rep. 9:9212019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao C, Irie N, Takada Y, Shimoda K,
Miyamoto T, Nishiwaki T, Suda T and Matsuo K: Bidirectional
ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab.
4:111–121. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pasquale EB: Eph-ephrin bidirectional
signaling in physiology and disease. Cell. 133:38–52. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bochenek ML, Dickinson S, Astin JW, Adams
RH and Nobes CD: Ephrin-B2 regulates endothelial cell morphology
and motility independently of Eph-receptor binding. J Cell Sci.
123:1235–1246. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pennisi A, Ling W, Li X, Khan S,
Shaughnessy JD Jr, Barlogie B and Yaccoby S: The ephrinB2/EphB4
axis is dysregulated in osteoprogenitors from myeloma patients and
its activation affects myeloma bone disease and tumor growth.
Blood. 114:1803–1812. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Füller T, Korff T, Kilian A, Dandekar G
and Augustin HG: Forward EphB4 signaling in endothelial cells
controls cellular repulsion and segregation from ephrinB2 positive
cells. J Cell Sci. 116:2461–2470. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu SY, Wang PL, Liao CS, Yang YQ, Yuan
CY, Wang S, Dissanayaka WL, Heng BC and Zhang CF: transgenic
expression of ephrinB2 in periodontal ligament stem cells (PDLSCs)
modulates osteogenic differentiation via signaling crosstalk
between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and
pre-osteoblasts within co-culture. J Periodontal Res. 52:562–573.
2017. View Article : Google Scholar
|
14
|
Yuan C, Wang P, Zhu S, Zou T, Wang S, Xu
J, Heng BC, Diogenes A and Zhang C: EphrinB2 stabilizes
vascularlike structures generated by endothelial cells and stem
cells from apical papilla. J Endod. 42:1362–1370. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gong T, Heng BC, Xu J, Zhu S, Yuan C, Lo
EC and Zhang C: Decellularized extracellular matrix of human
umbilical vein endothelial cells promotes endothelial
differentiation of stem cells from exfoliated deciduous teeth. J
Biomed Mater Res A. 105:1083–1093. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gronthos S, Mankani M, Brahim J, Robey PG
and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro
and in vivo. Proc Natl Acad Sci USA. 97:13625–13630. 2000.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Miura M, Gronthos S, Zhao M, Lu B, Fisher
LW, Robey PG and Shi S: SHED: Stem cells from human exfoliated
deciduous teeth. Proc Natl Acad Sci USA. 100:5807–5812. 2003.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Huang GT, Sonoyama W, Liu Y, Liu H, Wang S
and Shi S: The hidden treasure in apical papilla: The potential
role in pulp/dentin regeneration and bioroot engineering. J Endod.
34:645–651. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Z, Nor F, Oh M, Cucco C, Shi S and
Nör JE: Wnt/β-catenin signaling determines the vasculogenic fate of
postnatal mesenchymal stem cells. Stem Cells. 34:1576–1587. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bento LW, Zhang Z, Imai A, Nör F, Dong Z,
Shi S, Araujo FB and Nör JE: Endothelial differentiation of SHED
requires MEK1/ERK signaling. J Dent Res. 92:51–57. 2013. View Article : Google Scholar :
|
21
|
Dissanayaka WL, Zhu L, Hargreaves KM, Jin
L and Zhang C: Scaffold-free prevascularized microtissue spheroids
for pulp regeneration. J Dent Res. 93:1296–1303. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cordeiro MM, Dong Z, Kaneko T, Zhang Z,
Miyazawa M, Shi S, Smith AJ and Nör JE: Dental pulp tissue
engineering with stem cells from exfoliated deciduous teeth. J
Endod. 34:962–969. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang N, Chen B, Wang W, Chen C, Kang J,
Deng SQ, Zhang B, Liu S and Han F: Isolation, characterization and
multi-lineage differentiation of stem cells from human exfoliated
deciduous teeth. Mol Med Rep. 14:95–102. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qazi TH, Mooney DJ, Pumberger M, Geissler
S and Duda GN: Biomaterials based strategies for skeletal muscle
tissue engineering: Existing technologies and future trends.
Biomaterials. 53:502–521. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Akizuki T, Oda S, Komaki M, Tsuchioka H,
Kawakatsu N, Kikuchi A, Yamato M, Okano T and Ishikawa I:
Application of periodontal ligament cell sheet for periodontal
regeneration: A pilot study in beagle dogs. J Periodontal Res.
40:245–251. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Iwata T, Yamato M, Tsuchioka H, Takagi R,
Mukobata S, Washio K, Okano T and Ishikawa I: Periodontal
regeneration with multi-layered periodontal ligament-derived cell
sheets in a canine model. Biomaterials. 30:2716–2723. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Tsumanuma Y, Iwata T, Washio K, Yoshida T,
Yamada A, Takagi R, Ohno T, Lin K, Yamato M, Ishikawa I, et al:
Comparison of different tissue-derived stem cell sheets for
periodontal regeneration in a canine 1-wall defect model.
Biomaterials. 32:5819–5825. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bugueño J, Li W, Salat P, Qin L and
Akintoye SO: The bone regenerative capacity of canine mesenchymal
stem cells is regulated by site-specific multilineage
differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol.
123:163–172. 2017. View Article : Google Scholar
|
29
|
Dissanayaka WL, Zhu X, Zhang C and Jin L:
Characterization of dental pulp stem cells isolated from canine
premolars. J Endod. 37:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Albini A and Benelli R: The chemoinvasion
assay: A method to assess tumor and endothelial cell invasion and
its modulation. Nat Protoc. 2:504–511. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
32
|
Hermida-Gómez T, Fuentes-Boquete I,
Gimeno-Longas MJ, Muiños-López E, Díaz-Prado S, de Toro FJ and
Blanco FJ: Quantification of cells expressing mesenchymal stem cell
markers in healthy and osteoarthritic synovial membranes. J
Rheumatol. 38:339–349. 2011. View Article : Google Scholar
|
33
|
Greco SJ, Liu K and Rameshwar P:
Functional similarities among genes regulated by OCT4 in human
mesenchymal and embryonic stem cells. Stem Cells. 25:3143–3154.
2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tonna S, Takyar FM, Vrahnas C,
Crimeen-Irwin B, Ho PW, Poulton IJ, Brennan HJ, McGregor NE, Allan
EH, Nguyen H, et al: EphrinB2 signaling in osteoblasts promotes
bone mineralization by preventing apoptosis. FASEB J. 28:4482–4496.
2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ning H, Lin G, Lue TF and Lin CS:
Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen.
Biochem Biophys Res Commun. 413:353–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nakada M, Anderson EM, Demuth T, Nakada S,
Reavie LB, Drake KL, Hoelzinger DB and Berens ME: The
phosphorylation of ephrin-B2 ligand promotes glioma cell migration
and invasion. Int J Cancer. 126:1155–1165. 2010.
|
37
|
Steinle JJ, Meininger CJ, Chowdhury U, Wu
G and Granger HJ: Role of ephrin B2 in human retinal endothelial
cell proliferation and migration. Cell Signal. 15:1011–1017. 2003.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Edwards CM and Mundy GR: Eph receptors and
ephrin signaling pathways: A role in bone homeostasis. Int J Med
Sci. 5:263–272. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Heng BC, Wang S, Gong T, Xu J, Yuan C and
Zhang C: EphrinB2 signaling enhances osteogenic/odontogenic
differentiation of human dental pulp stem cells. Arch Oral Biol.
87:62–71. 2018. View Article : Google Scholar
|
40
|
Ikeda Y, Sun Z, Ru X, Vandenberghe LH and
Humphreys BD: Efficient gene transfer to kidney mesenchymal cells
using a synthetic adeno-associated viral Vector. J Am Soc Nephrol.
29:2287–2297. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang L, Zhang J, Wang C, Qi Y, Du M, Liu
W, Yang C and Yang P: Low concentrations of TNF-α promote
osteogenic differentiation via activation of the ephrinB2-EphB4
signalling pathway. Cell Prolif. 50:2017. View Article : Google Scholar
|
42
|
Tierney EG, Mcsorley K, Hastings CL, Cryan
SA, O'Brien T, Murphy MJ, Barry FP, O'Brien FJ and Duffy GP: High
levels of ephrinB2 over-expression increases the osteogenic
differentiation of human mesenchymal stem cells and promotes
enhanced cell mediated mineralisation in a
polyethyleneimine-ephrinB2 gene-activated matrix. J Control
Release. 165:173–182. 2013. View Article : Google Scholar
|
43
|
Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L,
Zheng C, Li D, Hou J, Taichman RS and Sun H: Erythropoietin
promotes bone formation through EphrinB2/EphB4 signaling. J Dent
Res. 94:455–463. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Matsuo K and Otaki N: Bone cell
interactions through Eph/ephrin: Bone modeling, remodeling and
associated diseases. Cell Adh Migr. 6:148–156. 2012. View Article : Google Scholar : PubMed/NCBI
|