1
|
Debout A, Foucher Y, Trébern-Launay K,
Legendre C, Kreis H, Mourad G, Garrigue V, Morelon E, Buron F,
Rostaing L, et al: Each additional hour of cold ischemia time
significantly increases the risk of graft failure and mortality
following renal transplantation. Kidney Int. 87:343–349. 2015.
View Article : Google Scholar
|
2
|
Girerd S, Frimat L, Ducloux D, Le Meur Y,
Mariat C, Moulin B, Mousson C, Reiu P, Dali-Youcef N, Merckle L, et
al: EPURE transplant (eplerenone in patients undergoing renal
transplant) study: Study protocol for a randomized controlled
trial. Trials. 19:5952018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tonelli M, Wiebe N, Knoll G, Bello A,
Browne S, Jadhav D, Klarenbach S and Gill J: Systematic review:
Kidney transplantation compared with dialysis in clinically
relevant outcomes. Am J Transplant. 11:2093–2109. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lannemyr L, Bragadottir G, Hjärpe A,
Redfors B and Ricksten SE: Impact of cardiopulmonary bypass flow on
renal oxygenation in patients undergoing cardiac surgery. Ann
Thorac Surg. 107:505–511. 2019. View Article : Google Scholar
|
5
|
Nadim MK, Forni LG, Bihorac A, Hobson C,
Koyner JL, Shaw A, Arnaoutakis GJ, Ding X, Engelman DT, Gasparovic
H, et al: Cardiac and vascular surgery-associated acute kidney
injury: The 20th international consensus conference of the ADQI
(acute disease quality initiative) group. J Am Heart Assoc.
7:e0088342018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion- from mechanism to translation. Nat Med. 17:1391–1401.
2011. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Eltzschig HK: Targeting hypoxia-induced
inflammation. Anesthesiology. 114:239–242. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Choi HS, Hwang JK, Kim JG, Hwang HS, Lee
SJ, Chang YK, Kim JI and Moon IS: The optimal duration of ischemic
preconditioning for renal ischemia-reperfusion injury in mice. Ann
Surg Treat Res. 93:209–216. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jang HS, Kim J, Kim KY, Kim JI, Cho MH and
Park KM: Previous ischemia and reperfusion injury results in
resistance of the kidney against subsequent ischemia and
reperfusion insult in mice; a role for the Akt signal pathway.
Nephrol Dial Transplant. 27:3762–3770. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liang Y, Li Z, Mo N, Li M, Zhuang Z, Wang
J, Wang Y and Guo X: Isoflurane preconditioning ameliorates renal
ischemia-reperfusion injury through antiinflammatory and
anti-apoptotic actions in rats. Biol Pharm Bull. 37:1599–1605.
2014. View Article : Google Scholar
|
11
|
Su MW, Chang SS, Chen CH, Hung CC, Chang
SW, Tsai YC and Lam CF: Preconditioning renoprotective effect of
isoflurane in a rat model of virtual renal transplant. J Surg Res.
189:135–142. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lempiäinen J, Finckenberg P, Mervaala EE,
Storvik M, Lindstedt K, Levijoki J and Mervaala EM: Dexmedetomidine
preconditioning ameliorates kidney ischemia-reperfusion injury.
Pharmacol Res Perspect. 2:e000452014. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Lee HT, Chen SW, Doetschman TC, Deng C,
D'Agati VD and Kim M: Sevoflurane protects against renal ischemia
and reperfusion injury in mice via the transforming growth
factor-beta1 pathway. Am J Physiol Renal Physiol. 295:F128–F136.
2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Julier K, da Silva R, Garcia C, Bestmann
L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von
Segesser LK, et al: Preconditioning by sevoflurane decreases
biochemical markers for myocardial and renal dysfunction in
coronary artery bypass graft surgery: A double-blinded,
placebo-controlled, multicenter study. Anesthesiology.
98:1315–1327. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Godwin JG, Ge X, Stephan K, Jurisch A,
Tullius SG and Iacomini J: Identification of a microRNA signature
of renal ischemia reperfusion injury. Proc Natl Acad Sci USA.
107:14339–14344. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Morita T, Ishikawa M and Sakamoto A:
Identical microRNAs regulate liver protection during anaesthetic
and ischemic preconditioning in rats: An animal study. PLoS One.
10:e01258662015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Takayama J, Takaoka M and Matsumura Y:
Acute and chronic renal failure model in rats and mice. Nihon
Yakurigaku Zasshi. 131:37–42. 2008.In Japanese. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu L, Pang XL, Shang WJ, Xie HC, Wang JX
and Feng GW: Over-expressed microRNA-181a reduces glomerular
sclerosis and renal tubular epithelial injury in rats with chronic
kidney disease via down-regulation of the TLR/NF-κB pathway by
binding to CRY1. Mol Med. 24:492018. View Article : Google Scholar
|
20
|
Ishikawa M, Tanaka S, Arai M, Genda Y and
Sakamoto A: Differences in microRNA changes of healthy rat liver
between sevoflurane and propofol anesthesia. Anesthesiology.
117:1245–1252. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Luan Y, Chen M and Zhou L: miR-17 targets
PTEN and facilitates glial scar formation after spinal cord
injuries via the PI3K/Akt/mTOR pathway. Brain Res Bull. 128:68–75.
2017. View Article : Google Scholar
|
22
|
Sun G, Lu Y, Li Y, Mao J, Zhang J, Jin Y,
Sun Y, Liu L and Li L: miR-19a protects cardiomyocytes from
hypoxia/reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt
pathway. Biosci Rep. 37:BSR201708992017. View Article : Google Scholar :
|
23
|
Liu G, Cao P, Chen H, Yuan W, Wang J and
Tang X: miR-27a regulates apoptosis in nucleus pulposus cells by
targeting PI3K. PLoS One. 8:e752512013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Han J, Xuan JL, Hu HR and Chen ZW:
Protective effect against myocardial ischemia reperfusion injuries
induced by hyperoside preconditioning and its relationship with
PI3K/Akt signaling pathway in rats. Zhongguo Zhong Yao Za Zhi.
40:118–123. 2015.In Chinese. PubMed/NCBI
|
25
|
Wu J, Yu J, Xie P, Maimaitili Y, Wang J,
Yang L, Ma H, Zhang X, Yang Y and Zheng H: Sevoflurane
postconditioning protects the myocardium against
ischemia/reperfusion injury via activation of the JAK2-STAT3
pathway. PeerJ. 5:e31962017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu C, Liu Y, Shen Z, Mial L, Zhang K,
Wang F and Li Y: Sevoflurane preconditioning reduces intestinal
ischemia-reper-fusion injury: Role of protein kinase C and
mitochondrial ATP-sensitive potassium channel. PLoS One.
10:e01414262015. View Article : Google Scholar
|
27
|
Sun G, Zhou Y, Li H, Guo Y, Shan J, Xia M,
Li Y, Li S, Long D and Feng L: Over-expression of microRNA-494
up-regulates hypoxia-inducible factor-1 alpha expression via
PI3K/Akt pathway and protects against hypoxia-induced apop-tosis. J
Biomed Sci. 20:1002013. View Article : Google Scholar
|
28
|
Nitulescu GM, Van De Venter M, Nitulescu
G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis
A, Tsoukalas D, et al: The Akt pathway in oncology therapy and
beyond (review). Int J Oncol. 53:2319–2331. 2018.PubMed/NCBI
|
29
|
Satake A, Takaoka M, Nishikawa M, Yuba M,
Shibata Y, Okumura K, Kitano K, Tsutsui H, Fujii K, Kobuchi S, et
al: Protective effect of 17beta-estradiol on ischemic acute renal
failure through the PI3K/Akt/eNOS pathway. Kidney Int. 73:308–317.
2008. View Article : Google Scholar
|
30
|
Song G, Ouyang G and Bao S: The activation
of Akt/PKB signaling pathway and cell survival. J Cell Mol Med.
9:59–71. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang J, Liu XB, Cheng C, Xu DL, Lu QH and
Ji XP: Rho-kinase inhibition is involved in the activation of
PI3-kinase/Akt during ischemic-preconditioning-induced
cardiomyocyte apoptosis. Int J Clin Exp Med. 7:4107–4114. 2014.
|
32
|
Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ and
Han XL: MicroRNA-374 exerts protective effects by inhibiting SP1
through activating the PI3K/Akt pathway in rat models of myocardial
ischemia-reperfusion after sevoflurane preconditioning. Cell
Physiol Biochem. 46:1455–1470. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu X, Hong Q, Wang Z, Yu Y, Zou X and Xu
L: miR-21 inhibits autophagy by targeting Rab11a in renal
ischemia/reperfusion. Exp Cell Res. 338:64–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou M, Cai J, Tang Y and Zhao Q:
miR-17-92 cluster is a novel regulatory gene of cardiac
ischemic/reperfusion injury. Med Hypotheses. 81:108–110. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Hu Q, Luo W, Huang L, Huang R and Chen R:
Apoptosis-related microRNA changes in the right atrium induced by
remote ischemic perconditioning during valve replacement surgery.
Sci Rep. 6:189592016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen J, Huang ZP, Seok HY, Ding J, Kataoka
M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, et al: mir-17-92 cluster
is required for and sufficient to induce cardiomyocyte
proliferation in postnatal and adult hearts. Circ Res.
112:1557–1566. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Benhamou D, Labi V, Novak R, Dai I,
Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky
K and Melamed D: A c-Myc/miR17-92/Pten axis controls PI3K-mediated
positive and negative selection in B cell development and
reconstitutes CD19 deficiency. Cell Rep. 16:419–431. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ma Q, Peng Z, Wang L, Li Y, Wang K, Zheng
J, Liang Z and Liu T: miR-19a correlates with poor prognosis of
clear cell renal cell carcinoma patients via promoting cell
proliferation and suppressing PTEN/SMAD4 expression. Int J Oncol.
49:2589–2599. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liang Z, Pan Q, Zhang Z, Huang C, Yan Z,
Zhang Y and Li J: MicroRNA-125a-5p controls the proliferation,
apoptosis, migration and PTEN/MEK1/2/ERK1/2 signaling pathway in
MCF-7 breast cancer cells. Mol Med Rep. 20:4507–4514.
2019.PubMed/NCBI
|
40
|
Zheng W, Matei N, Pang J, Luo X, Song Z,
Tang J and Zhang JH: Delayed recanalization at 3 days after
permanent MCAO attenuates neuronal apoptosis through
FGF21/FGFR1/PI3K/Caspase-3 pathway in rats. Exp Neurol.
320:1130072019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yamamura S, Saini S, Majid S, Hirata H,
Ueno K, Chang I, Tanaka Y, Gupta A and Dahiya R: MicroRNA-34a
suppresses malignant transformation by targeting c-Myc
transcriptional complexes in human renal cell carcinoma.
Carcinogenesis. 33:294–300. 2012. View Article : Google Scholar :
|