1
|
Liu T, Liu Y, Xie L, He X and Bai J:
Progress in the pathogenesis of pterygium. Curr Eye Res.
38:1191–1197. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nuzzi R and Tridico F: How to minimize
pterygium recurrence rates: Clinical perspectives. Clin Ophthalmol.
12:2347–2362. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhou WP, Zhu YF, Zhang B, Qiu WY and Yao
YF: The role of ultraviolet radiation in the pathogenesis of
pterygia (Review). Mol Med Rep. 14:3–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cardenas-Cantu E, Zavala J, Valenzuela J
and Valdez-Garcia JE: Molecular basis of pterygium development.
Semin Ophthalmol. 31:567–583. 2016.
|
5
|
Di Girolamo N, Chui J, Coroneo MT and
Wakefield D: Pathogenesis of pterygia: Role of cytokines, growth
factors, and matrix metalloproteinases. Prog Retin Eye Res.
23:195–228. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Maurizi E, Schiroli D, Atkinson SD, Mairs
L, Courtney DG, O'Hagan B, McGilligan VE, Pagnamenta AT, Taylor JC,
Vasquez JJD, et al: A novel role for CRIM1 in the corneal response
to UV and pterygium development. Exp Eye Res. 179:75–92. 2019.
View Article : Google Scholar
|
7
|
Segev F, Mimouni M, Tessler G, Hilely A,
Ofir S, Kidron D and Bahar I: A 10-year survey: Prevalence of
ocular surface squamous neoplasia in clinically benign pterygium
specimens. Curr Eye Res. 40:1284–1287. 2015. View Article : Google Scholar
|
8
|
Oellers P, Karp CL, Sheth A, Kao AA,
Abdelaziz A, Matthews JL, Dubovy SR and Galor A: Prevalence,
treatment, and outcomes of coexistent ocular surface squamous
neoplasia and pterygium. Ophthalmology. 120:445–450. 2013.
View Article : Google Scholar
|
9
|
Qin YJ, Chu WK, Huang L, Ng CHY, Chan TCY,
Cao D, Yang C, Zhang L, Huang SP, Li J, et al: Induction of
apoptosis in pterygium cells by antagonists of growth
hormone-releasing hormone receptors. Invest Ophthalmol Vis Sci.
59:5060–5066. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cui YH, Li HY, Gao ZX, Liang N, Ma SS,
Meng FJ, Li ZJ and Pan HW: Regulation of apoptosis by miR-122 in
pterygium via targeting Bcl-w. Invest Ophthalmol Vis Sci.
57:3723–3730. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liang K, Jiang Z, Ding BQ, Cheng P, Huang
DK and Tao LM: Expression of cell proliferation and apoptosis
biomarkers in pterygia and normal conjunctiva. Mol Vis.
17:1687–1693. 2011.PubMed/NCBI
|
12
|
Tan DT, Tang WY, Liu YP, Goh HS and Smith
DR: Apoptosis and apoptosis related gene expression in normal
conjunctiva and pterygium. Br J Ophthalmol. 84:212–216. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Meshkani SE, Kooshan N, Moghadam AB,
Falanji F, Adli A, Baghbani-Arani F, Arian AG and Rad A: Signaling
roadmap to epithelial-mesenchymal transition in pterygium, TWIST1
centralized. J Cell Physiol. 234:18146–18155. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kasof GM and Gomes BC: Livin, a novel
inhibitor of apoptosis protein family member. J Biol Chem.
276:3238–3246. 2001. View Article : Google Scholar
|
15
|
Wang Z, Liu S, Ding K, Ding S, Li C, Gao
D, Zhang T and Bi D: Silencing Livin induces apoptotic and
autophagic cell death, increasing chemotherapeutic sensitivity to
cisplatin of renal carcinoma cells. Tumour Biol. 37:15133–15143.
2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu YX, Zhang LY, Zou DL, Liu ZS, Shang XM,
Wu HP, Zhou Y, He H and Liu ZG: Differential expression and
function of survivin during the progress of pterygium. Invest
Ophthalmol Vis Sci. 55:8480–8487. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
18
|
Di Girolamo N, McCluskey P, Lloyd A,
Coroneo MT and Wakefield D: Expression of MMPs and TIMPs in human
pterygia and cultured pterygium epithelial cells. Invest Ophthalmol
Vis Sci. 41:671–679. 2000.PubMed/NCBI
|
19
|
Pearlman RL, Montes de Oca MK, Pal HC and
Afaq F: Potential therapeutic targets of epithelial-mesenchymal
transition in melanoma. Cancer Lett. 391:125–140. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Safi H, Kheirkhah A, Mahbod M, Molaei S,
Hashemi H and Jabbarvand M: Correlations between histopathologic
changes and clinical features in pterygia. J Ophthalmic Vis Res.
11:153–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Di Girolamo N, Wakefield D and Coroneo MT:
UVB-mediated induction of cytokines and growth factors in pterygium
epithelial cells involves cell surface receptors and intracellular
signaling. Invest Ophthalmol Vis Sci. 47:2430–2437. 2006.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Peng J, Sha XY, Liu Y, Yang RM and Wen Y:
Pterygium epithelium abnormal differentiation related to activation
of extracellular signal-regulated kinase signaling pathway in
vitro. Int J Ophthalmol. 8:1118–1125. 2015.PubMed/NCBI
|
23
|
Tsai YY, Chiang CC, Yeh KT, Lee H and
Cheng YW: Effect of TIMP-1 and MMP in pterygium invasion. Invest
Ophthalmol Vis Sci. 51:3462–3467. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Weinstein O, Rosenthal G, Zirkin H, Monos
T, Lifshitz T and Argov S: Overexpression of p53 tumor suppressor
gene in pterygia. Eye (Lond). 16:619–621. 2002. View Article : Google Scholar
|
25
|
Maxia C, Perra MT, Demurtas P, Minerba L,
Murtas D, Piras F, Corbu A, Gotuzzo DC, Cabrera RG, Ribatti D and
Sirigu P: Expression of survivin protein in pterygium and
relationship with oxidative DNA damage. J Cell Mol Med.
12:2372–2380. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Han Y, Zhang L, Wang W, Li J and Song M:
Livin promotes the progression and metastasis of breast cancer
through the regulation of epithelialmesenchymal transition via the
p38/GSK3beta pathway. Oncol Rep. 38:3574–3582. 2017.PubMed/NCBI
|
27
|
Yan B: Research progress on Livin protein:
An inhibitor of apoptosis. Mol Cell Biochem. 357:39–45. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Huber MA, Kraut N and Beug H: Molecular
requirements for epithelial-mesenchymal transition during tumor
progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kato N, Shimmura S, Kawakita T, Miyashita
H, Ogawa Y, Yoshida S, Higa K, Okano H and Tsubota K: Beta-catenin
activation and epithelial-mesenchymal transition in the
pathogenesis of pterygium. Invest Ophthalmol Vis Sci. 48:1511–1517.
2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Slee EA, Adrain C and Martin SJ:
Executioner caspase-3, -6, and -7 perform distinct, non-redundant
roles during the demolition phase of apoptosis. J Biol Chem.
276:7320–7326. 2001. View Article : Google Scholar
|
31
|
Lee HS, Lee JH and Yang JW: Effect of
porcine chondrocyte-derived extracellular matrix on the pterygium
in mouse model. Graefes Arch Clin Exp Ophthalmol. 252:609–618.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Aletras AJ, Trilivas I, Christopoulou ME,
Drakouli S, Georgakopoulos CD and Pharmakakis N: UVB-mediated
down-regulation of proteasome in cultured human primary pterygium
fibroblasts. BMC Ophthalmol. 18:3282018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Di Girolamo N, Kumar RK, Coroneo MT and
Wakefield D: UVB-mediated induction of interleukin-6 and -8 in
pterygia and cultured human pterygium epithelial cells. Invest
Ophthalmol Vis Sci. 43:3430–3437. 2002.PubMed/NCBI
|