1
|
Fitridge R and Thompson M: Mechanisms of
Vascular Disease: A Reference Book for Vascular Specialists
[Internet]. University of Adelaide Press; Adelaide, AU: 2011
|
2
|
Benjamin EJ, Virani SS, Callaway CW,
Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling
FN, Deo R, et al: Heart disease and stroke statistics-2018 update:
A report from the American Heart Association. Circulation.
137:e67–e492. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Libby P, Bornfeldt KE and Tall AR:
Atherosclerosis: Successes, surprises, and future challenges. Circ
Res. 118:531–534. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee DY and Chiu JJ: Atherosclerosis and
flow: Roles of epigenetic modulation in vascular endothelium. J
Biomed Sci. 26:562019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gimbrone MA Jr and García-Cardeña G:
Endothelial cell dysfunction and the pathobiology of
atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Back M, Yurdagul A Jr, Tabas I, Oorni K
and Kovanen PT: Inflammation and its resolution in atherosclerosis:
Mediators and therapeutic opportunities. Nat Rev Cardiol.
16:389–406. 2019.PubMed/NCBI
|
7
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang
J, Yuan Q, Yu H, Xu W and Xie X: New insights into oxidative stress
and inflammation during diabetes mellitus-accelerated
atherosclerosis. Redox Biol. 20:247–260. 2019. View Article : Google Scholar
|
8
|
Libby P, Buring JE, Badimon L, Hansson GK,
Deanfield J, Bittencourt MS, Tokgözoğlu L and Lewis EF:
Atherosclerosis. Nat Rev Dis Primers. 5:562019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Trpkovic A, Resanovic I, Stanimirovic J,
Radak D, Mousa SA, Cenic-Milosevic D, Jevremovic D and Isenovic ER:
Oxidized low-density lipoprotein as a biomarker of cardiovascular
diseases. Crit Rev Clin Lab Sci. 52:70–85. 2015. View Article : Google Scholar
|
10
|
Cao Y, Gong Y, Liu L, Zhou Y, Fang X,
Zhang C, Li Y and Li J: The use of human umbilical vein endothelial
cells (HUVECs) as an in vitro model to assess the toxicity of
nanoparticles to endothelium: A review. J Appl Toxicol.
37:1359–1369. 2017. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Shangguan WJ, Zhang YH, Li ZC, Tang LM,
Shao J and Li H: Naringin inhibits vascular endothelial cell
apoptosis via endoplasmic reticulum stress and
mitochondrialmediated pathways and promotes intraosseous
angiogenesis in ovariectomized rats. Int J Mol Med. 40:1741–1749.
2017.PubMed/NCBI
|
12
|
Cai L, Li CM, Tang WJ, Liu MM, Chen WN,
Qiu YY and Li R: Therapeutic effect of penta-acetyl geniposide on
adjuvant-induced arthritis in rats: Involvement of inducing
synovial apoptosis and inhibiting NF-κB signal pathway.
Inflammation. 41:2184–2195. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pan T, Shi X, Chen H, Chen R, Wu D, Lin Z,
Zhang J and Pan J: Correction to: Geniposide suppresses
interleukin-1β-induced inflammation and apoptosis in rat
chondrocytes via the PI3K/Akt/NF-κB signaling pathway.
Inflammation. 42:404–405. 2019. View Article : Google Scholar
|
14
|
Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao
L and Liu J: Geniposide prevents Hypoxia/Reoxygenation-Induced
apoptosis in H9c2 Cells: Improvement of mitochondrial dysfunction
and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell
Physiol Biochem. 39:407–421. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Habtemariam S and Lentini G: Plant-derived
anticancer agents: Lessons from the pharmacology of geniposide and
its aglycone, genipin. Biomedicines. 6:pii: E39. 2018. View Article : Google Scholar
|
16
|
Koo HJ, Lee S, Shin KH, Kim BC, Lim CJ and
Park EH: Geniposide, an anti-angiogenic compound from the fruits of
Gardenia jasminoides. Planta Med. 70:467–469. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cheng S, Zhou F, Xu Y, Liu X, Zhang Y, Gu
M, Su Z, Zhao D, Zhang L and Jia Y: Geniposide regulates the
miR-101/MKP-1/p38 pathway and alleviates atherosclerosis
inflammatory injury in ApoE(−/−) mice. Immunobiology. 224:296–306.
2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang B, Liao PP, Liu LH, Fang X, Li W and
Guan SM: Baicalin and geniposide inhibit the development of
atherosclerosis by increasing Wnt1 and inhibiting dickkopf-related
protein-1 expression. J Geriatr Cardiol. 13:846–854.
2016.PubMed/NCBI
|
19
|
Bhaskaran M and Mohan M: MicroRNAs:
History, biogenesis, and their evolving role in animal development
and disease. Vet Pathol. 51:759–774. 2014. View Article : Google Scholar :
|
20
|
Kumarswamy R, Volkmann I and Thum T:
Regulation and function of miRNA-21 in health and disease. RNA
Biol. 8:706–713. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Juźwik CA, Drake S, Zhang Y, Paradis-Isler
N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS and
Fournier AE: microRNA dysregulation in neurodegenerative diseases:
A systematic review. Prog Neurobiol. 182:1016642019. View Article : Google Scholar
|
22
|
Cheng Y and Zhang C: MicroRNA-21 in
cardiovascular disease. J Cardiovasc Transl Res. 3:251–255. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Jazbutyte V and Thum T: MicroRNA-21: From
cancer to cardiovascular disease. Curr Drug Targets. 11:926–935.
2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li FP, Lin DQ and Gao LY: LncRNA TUG1
promotes proliferation of vascular smooth muscle cell and
atherosclerosis through regulating miRNA-21/PTEN axis. Eur Rev Med
Pharmacol Sci. 22:7439–7447. 2018.PubMed/NCBI
|
25
|
Yang Q, Yang K and Li AY: Trimetazidine
protects against hypoxia-reperfusion-induced cardiomyocyte
apoptosis by increasing microRNA-21 expression. Int J Clin Exp
Pathol. 8:3735–3741. 2015.PubMed/NCBI
|
26
|
Canfrán-Duque A, Rotllan N, Zhang X,
Fernández-Fuertes M, Ramírez-Hidalgo C, Araldi E, Daimiel L, Busto
R, Fernández-Hernando C and Suárez Y: Macrophage deficiency of
miR-21 promotes apoptosis, plaque necrosis, and vascular
inflammation during atherogenesis. EMBO Mol Med. 9:1244–1262. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chipont A, Esposito B, Challier I,
Montabord M, Tedgui A, Mallat Z, Loyer X and Potteaux S:
Microrna-21 deficiency alters the survival of ly-6clo monocytes in
apoe−/− mice and reduces early-stage
atherosclerosis-brief report. Arterioscler Thromb Vasc Biol.
39:170–177. 2019. View Article : Google Scholar
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (−D elta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Murphy KM, Ranganathan V, Farnsworth ML,
Kavallaris M and Lock RB: Bcl-2 inhibits Bax translocation from
cytosol to mitochondria during drug-induced apoptosis of human
tumor cells. Cell Death Differ. 7:102–111. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Riedl SJ and Shi Y: Molecular mechanisms
of caspase regulation during apoptosis. Nat Rev Mol Cell Biol.
5:897–907. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang
Z, Gao X, Chen Z, Xue H and Li G: Immunosuppressive effects of
hypoxia-induced glioma exosomes through myeloid-derived suppressor
cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene.
37:4239–4259. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Luo Q, Cai Z, Tu J, Ling Y, Wang D and Cai
Y: Total flavonoids from Smilax glabra Roxb blocks
epithelial-mesenchymal transition and inhibits renal interstitial
fibrosis by targeting miR-21/PTEN signaling. J Cell Biochem.
120:3861–3873. 2019. View Article : Google Scholar
|
33
|
Emini Veseli B, Perrotta P, De Meyer GRA,
Roth L, Van der Donckt C, Martinet W and De Meyer GRY: Animal
models of atherosclerosis. Eur J Pharmacol. 816:3–13. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Olvera Lopez E and Jan A: Cardiovascular
Disease. StatPearls Treasure Island (FL): 2019
|
35
|
Ma ZG, Kong CY, Song P, Zhang X, Yuan YP
and Tang QZ: Geniposide protects against obesity-related cardiac
injury through AMPKalpha- and Sirt1-Dependent Mechanisms. Oxid Med
Cell Longev. 2018:6053727. 2018. View Article : Google Scholar
|
36
|
Zhang Z, Wang X, Zhang D, Liu Y and Li L:
Geniposide-mediated protection against amyloid deposition and
behavioral impairment correlates with downregulation of mTOR
signaling and enhanced autophagy in a mouse model of Alzheimer’s
disease. Aging (Albany NY). 11:536–548. 2019. View Article : Google Scholar
|
37
|
Liao P, Liu L, Wang B, Li W, Fang X and
Guan S: Baicalin and geniposide attenuate atherosclerosis involving
lipids regulation and immunoregulation in ApoE−/− mice. Eur J
Pharmacol. 740:488–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu L, Liao P, Wang B, Fang X, Li W and
Guan S: Oral administration of baicalin and geniposide induces
regression of atherosclerosis via inhibiting dendritic cells in
ApoE-knockout mice. Int Immunopharmacol. 20:197–204. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Paone S, Baxter AA, Hulett MD and Poon
IKH: Endothelial cell apoptosis and the role of endothelial
cell-derived extracellular vesicles in the progression of
atherosclerosis. Cell Mol Life Sci. 76:1093–1106. 2019. View Article : Google Scholar
|
40
|
Oyama Y, Bartman CM, Gile J and Eckle T:
Circadian microRNAs in Cardioprotection. Curr Pharm Des.
23:3723–3730. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang Q, Yang K and Li A: microRNA-21
protects against ischemia-reperfusion and
hypoxia-reperfusion-induced cardiocyte apoptosis via the
phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med
Rep. 9:2213–2220. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang JY, Ma J, Yu P, Tang GJ, Li CJ, Yu
DM and Zhang QM: Reduced beta 2 glycoprotein I prevents high
glucose-induced cell death in HUVECs through miR-21/PTEN. Am J
Transl Res. 9:3935–3949. 2017.PubMed/NCBI
|
43
|
Nariman-Saleh-Fam Z, Vahed SZ,
Aghaee-Bakhtiari SH, Daraei A, Saadatian Z, Kafil HS, Yousefi B,
Eyvazi S, Khaheshi I, Parsa SA, et al: Expression pattern of
miR-21, miR-25 and PTEN in peripheral blood mononuclear cells of
patients with significant or insignificant coronary stenosis. Gene.
698:170–178. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Qiang Z, Meng L, Yi C, Yu L, Chen W and
Sha W: Curcumin regulates the miR-21/PTEN/Akt pathway and acts in
synergy with PD98059 to induce apoptosis of human gastric cancer
MGC-803 cells. J Int Med Res. 47:1288–1297. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang H, Feng X, Zhang M, Liu A, Tian L,
Bo W, Wang H and Hu Y: Long non-coding RNA CASC2 upregulates PTEN
to suppress pancreatic carcinoma cell metastasis by downregulating
miR-21. Cancer Cell Int. 19:182019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ma J and Ding Y: Geniposide suppresses
growth, migration and invasion of MKN45 cells by down-regulation of
lncRNA HULC. Exp Mol Pathol. 105:252–259. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kattoor AJ, Pothineni NVK, Palagiri D and
Mehta JL: Oxidative stress in atherosclerosis. Curr Atheroscler
Rep. 19:422017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Khosravi M, Poursaleh A, Ghasempour G,
Farhad S and Najafi M: The effects of oxidative stress on the
development of atherosclerosis. Biol Chem. 400:711–732. 2019.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Lu W, Zhao Y, Kong Y, Zhang W, Ma W, Li W
and Wang K: Geniposide prevents H2O2 -induced
oxidative damage in melanocytes by activating the PI3K-Akt
signalling pathway. Clin Exp Dermatol. 43:667–674. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu W, Li G, Holscher C and Li L:
Neuroprotective effects of geniposide on Alzheimer’s disease
pathology. Rev Neurosci. 26:371–383. 2015. View Article : Google Scholar
|
51
|
Shin D, Lee S, Huang YH, Lim HW, Lee Y,
Jang K, Cho Y, Park SJ, Kim DD and Lim CJ: Protective properties of
geniposide against UV-B-induced photooxidative stress in human
dermal fibroblasts. Pharm Biol. 56:176–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Magenta A, Dellambra E, Ciarapica R and
Capogrossi MC: Oxidative stress, microRNAs and cytosolic calcium
homeostasis. Cell Calcium. 60:207–217. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Pereira-da-Silva T, Coutinho Cruz M,
Carrusca C, Cruz Ferreira R, Napoleao P and Mota Carmo M:
Circulating microRNA profiles in different arterial territories of
stable atherosclerotic disease: A systematic review. Am J
Cardiovasc Dis. 8:1–13. 2018.PubMed/NCBI
|
54
|
Fredman G and Tabas I: Boosting
Inflammation Resolution in Atherosclerosis: The Next Frontier for
Therapy. Am J Pathol. 187:1211–1221. 2017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wu MY, Li CJ, Hou MF and Chu PY: New
Insights into the Role of Inflammation in the Pathogenesis of
Atherosclerosis. Int J Mol Sci. 18:pii: E2034. 2017. View Article : Google Scholar
|
56
|
Sheedy FJ: Turning 21: Induction of miR-21
as a key switch in the inflammatory response. Front Immunol.
6:192015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Yue S, Rao J, Zhu J, Busuttil RW,
Kupiec-Weglinski JW, Lu L, Wang X and Zhai Y: Myeloid PTEN
deficiency protects livers from ischemia reperfusion injury by
facilitating M2 macrophage differentiation. J Immunol.
192:5343–5353. 2014. View Article : Google Scholar : PubMed/NCBI
|