1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhou J, Zhang WW, Peng F, Sun JY, He ZY
and Wu SG: Downregulation of hsa_circ_0011946 suppresses the
migration and invasion of the breast cancer cell line MCF-7 by
targeting RFC3. Cancer Manag Res. 10:535–544. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rodgers RJ, Reid GD, Koch J, Deans R,
Ledger WL, Friedlander M, Gilchrist RB, Walters KA and Abbott JA:
The safety and efficacy of controlled ovarian hyperstimulation for
fertility preservation in women with early breast cancer: A
systematic review. Hum Reprod. 32:1033–1045. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou SY, Chen W, Yang SJ, Xu ZH, Hu JH,
Zhang HD, Zhong SL and Tang JH: The emerging role of circular RNAs
in breast cancer. Biosci Rep. 39:BSR201906212019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hattori M and Iwata H: Advances in
treatment and care in meta-static breast cancer (MBC): Are there
MBC patients who are curable? Chin Clin Oncol. 7:232018. View Article : Google Scholar
|
6
|
Andersson Y, Bergkvist L, Frisell J and de
Boniface J: Long-term breast cancer survival in relation to the
metastatic tumor burden in axillary lymph nodes. Breast Cancer Res
Treat. 171:359–369. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang Z, Katsaros D, Biglia N, Shen Y, Fu
Y, Loo LWM, Jia W, Obata Y and Yu H: High expression of long
non-coding RNA MALAT1 in breast cancer is associated with poor
relapse-free survival. Breast Cancer Res Treat. 171:261–271. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sobierajska K, Ciszewski WM, Wawro ME,
Wieczorek-Szukała K, Boncela J, Papiewska-Pajak I, Niewiarowska J
and Kowalska MA: TUBB4B downregulation is critical for increasing
migration of metastatic colon cancer cells. Cells. 8:E8102019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Arnold JM, Gu F, Ambati CR, Rasaily U,
Ramirez-Pena E, Joseph R, Manikkam M, San Martin R, Charles C, Pan
Y, et al: UDP-glucose 6-dehydrogenase regulates hyaluronic acid
production and promotes breast cancer progression. Oncogene. July
15–2019.Epub ahead of print.
|
10
|
Gruenbacher G and Thurnher M: Mevalonate
metabolism in cancer stemness and trained immunity. Front Oncol.
8:3942018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bhowmik SK, Ramirez-Peña E, Arnold JM,
Putluri V, Sphyris N, Michailidis G, Putluri N, Ambs S, Sreekumar A
and Mani SA: EMT-induced metabolite signature identifies poor
clinical outcome. Oncotarget. 6:42651–42660. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Porshneva K, Papiernik D, Psurski M,
Łupicka-Słowik A, Matkowski R, Ekiert M, Nowak M, Jarosz J, Banach
J, Milczarek M, et al: Temporal inhibition of mouse mammary gland
cancer metastasis by CORM-A1 and DETA/NO combination therapy.
Theranostics. 9:3918–3939. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang HF, Wang SS, Zheng M, Dai LL, Wang K,
Gao XL, Cao MX, Yu XH, Pang X, Zhang M, et al: Hypoxia promotes
vasculogenic mimicry formation by vascular endothelial growth
factor A mediating epithelial-mesenchymal transition in salivary
adenoid cystic carcinoma. Cell Prolif. 52:e126002019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Singh S and Chakrabarti R: Consequences of
EMT-driven changes in the immune microenvironment of breast cancer
and therapeutic response of cancer cells. J Clin Med. 8:E6422019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang HL, Thiyagarajan V, Shen PC, Mathew
DC, Lin KY, Liao JW and Hseu YC: Anti-EMT properties of CoQ0
attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through
ROS-mediated apoptosis. J Exp Clin Cancer Res. 38:1862019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Gener P, Rafael D, Seras-Franzoso J, Perez
A, Pindado LA, Casas G, Arango D, Fernández Y, Díaz-Riascos ZV,
Abasolo I and Schwartz S Jr: Pivotal role of AKT2 during dynamic
phenotypic change of breast cancer stem cells. Cancers (Basel).
11:E10582019. View Article : Google Scholar
|
17
|
Holdt LM, Kohlmaier A and Teupser D:
Molecular roles and function of circular RNAs in eukaryotic cells.
Cell Mol Life Sci. 75:1071–1098. 2018. View Article : Google Scholar :
|
18
|
Patop IL, Wüst S and Kadener S: Past,
present, and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P
and Yang BB: Foxo3 circular RNA retards cell cycle progression via
forming ternary complexes with p21 and CDK2. Nucleic Acids Res.
44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guarnerio J, Bezzi M, Jeong JC, Paffenholz
SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP:
Oncogenic role of fusion-circRNAs derived from cancer-associated
chromosomal translocations. Cell. 165:289–302. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liang Y, Song X, Li Y, Ma T, Su P, Guo R,
Chen B, Zhang H, Sang Y, Liu Y, et al: Targeting the
circBMPR2/miR-553/USP4 axis as a potent therapeutic approach for
breast cancer. Mol Ther Nucleic Acids. 17:347–361. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang L, Song C, Chen Y, Jing G and Sun J:
Circular RNA circ_0103552 forecasts dismal prognosis and promotes
breast cancer cell proliferation and invasion by sponging miR-1236.
J Cell Biochem. 120:15553–15560. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu JH, Wang Y and Xu D: Hsa_circ_001569 is
an unfavorable prognostic factor and promotes cell proliferation
and metastasis by modulating PI3K-AKT pathway in breast cancer.
Cancer Biomark. 25:193–201. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hatta M, Miyake Y, Uchida K and Yamazaki
J: Keratin 13 gene is epigenetically suppressed during transforming
growth factor-beta1-induced epithelial-mesenchymal transition in a
human keratinocyte cell line. Biochem Biophys Res Commun.
496:381–386. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Suzuki S, Toyoma S, Tsuji T, Kawasaki Y
and Yamada T: CD147 mediates transforming growth factor-β1-induced
epithelial-mesenchymal transition and cell invasion in squamous
cell carcinoma of the tongue. Exp Ther Med. 17:2855–2860.
2019.PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Martínez-Reza I, Díaz L and García-Becerra
R: Preclinical and clinical aspects of TNF-α and its receptors
TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 24:902017.
View Article : Google Scholar
|
28
|
Manna PR, Ahmed AU, Yang S, Narasimhan M,
Cohen-Tannoudji J, Slominski AT and Pruitt K: Genomic profiling of
the steroidogenic acute regulatory protein in breast cancer: In
silico assessments and a mechanistic perspective. Cancers (Basel).
11:E6232019. View Article : Google Scholar
|
29
|
Saleh R, Taha RZ, Sasidharan Nair V,
Alajez NM and Elkord E: PD-L1 blockade by atezolizumab
downregulates signaling pathways associated with tumor growth,
metastasis, and hypoxia in human triple negative breast cancer.
Cancers (Basel). 11:E10502019. View Article : Google Scholar
|
30
|
Piperigkou Z and Karamanos NK: Estrogen
receptor-mediated targeting of the extracellular matrix network in
cancer. Semin Cancer Biol. July 13–2019.Epub ahead of print.
PubMed/NCBI
|
31
|
Sharma S, Wu SY, Jimenez H, Xing F, Zhu D,
Liu Y, Wu K, Tyagi A, Zhao D, Lo HW, et al: Ca2+ and
CACNA1H mediate targeted suppression of breast cancer brain
metastasis by AM RF EMF. EBioMedicine. 44:194–208. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gao JL, Peng K, Shen MW, Hou YH, Qian XB,
Meng XW, Ji FH, Wang LN and Yang JP: Suppression of WNK1-SPAK/OSR1
attenuates bone cancer pain by regulating NKCC1 and KCC2. J Pain.
20:1416–1428. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Prabhu VV, Madhukar NS, Gilvary C, Kline
CLB, Oster S, El-Deiry WS, Elemento O, Doherty F, VanEngelenburg A,
Durrant J, et al: Dopamine receptor D5 is a modulator of tumor
response to dopamine receptor D2 antagonism. Clin Cancer Res.
25:2305–2313. 2019. View Article : Google Scholar
|
34
|
Wu Q, Li J, Li Z, Sun S, Zhu S, Wang L, Wu
J, Yuan J, Zhang Y, Sun S and Wang C: Exosomes from the
tumour-adipocyte interplay stimulate beige/brown differentiation
and reprogram metabolism in stromal adipocytes to promote tumour
progression. J Exp Clin Cancer Res. 38:2232019. View Article : Google Scholar
|
35
|
Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M,
Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs
in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar
|
36
|
Ma B, Wells A and Clark AM: The
pan-therapeutic resistance of disseminated tumor cells: Role of
phenotypic plasticity and the metastatic microenvironment. Semin
Cancer Biol. July 31–2019.Epub ahead of print. PubMed/NCBI
|
37
|
Tang H, Huang X, Wang J, Yang L, Kong Y,
Gao G, Zhang L, Chen ZS and Xie X: circKIF4A acts as a prognostic
factor and mediator to regulate the progression of triple-negative
breast cancer. Mol Cancer. 18:232019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou
X, Xie X and Tang H: circFBXW7 inhibits malignant progression by
sponging miR-197-3p and encoding a 185-aa protein in
triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98.
2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Garikipati VNS, Verma SK, Cheng Z, Liang
D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et
al: Circular RNA CircFndc3b modulates cardiac repair after
myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang Y, Huang R, Cheng M, Wang L, Chao J,
Li J, Zheng P, Xie P, Zhang Z and Yao H: Gut microbiota from
NLRP3-deficient mice ameliorates depressive-like behaviors by
regulating astrocyte dysfunction via circHIPK2. Microbiome.
7:1162019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Su Y, Feng W, Shi J, Chen L, Huang J and
Lin T: circRIP2 accelerates bladder cancer progression via
miR-1305/Tgf-β2/smad3 pathway. Mol Cancer. 19:232020. View Article : Google Scholar
|
42
|
Chen X, Mao R, Su W, Yang X, Geng Q, Guo
C, Wang Z, Wang J, Kresty LA, Beer DG, et al: Circular RNA
circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα
signaling in STK11 mutant lung cancer. Autophagy. 1–13. 2019.
|
43
|
Tian C, Tang X, Zhu X, Zhou Q, Guo Y, Zhao
R, Wang D and Gong B: Expression profiles of circRNAs and the
potential diagnostic value of serum circMARK3 in human acute
stanford type A aortic dissection. PLoS One. 14:e02190132019.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan
Z, Liao T, Yao W, Wu W, Yu T, et al: Hsa_circ_0058124 promotes
papillary thyroid cancer tumorigenesis and invasiveness through the
NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 38:3182019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liang M, Huang G, Liu Z, Wang Q, Yu Z, Liu
Z, Lin H, Li M, Zhou X and Zheng Y: Elevated levels of
hsa_circ_006100 in gastric cancer promote cell growth and
metastasis via miR-195/GPRC5A signalling. Cell Prolif.
52:e126612019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang Y, Yuan Y, Liang P, Guo X, Ying Y,
Shu XS, Gao M Jr and Cheng Y: OSR1 is a novel epigenetic silenced
tumor suppressor regulating invasion and proliferation in renal
cell carcinoma. Oncotarget. 8:30008–30018. 2017.PubMed/NCBI
|
47
|
Otani K, Dong Y, Li X, Lu J, Zhang N, Xu
L, Go MY, Ng EK, Arakawa T, Chan FK, et al: Odd-skipped related 1
is a novel tumour suppressor gene and a potential prognostic
biomarker in gastric cancer. J Pathol. 234:302–315. 2014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Chen W, Wu K, Zhang H, Fu X, Yao F and
Yang A: Odd-skipped related transcription factor 1 (OSR1)
suppresses tongue squamous cell carcinoma migration and invasion
through inhibiting NF-κB pathway. Eur J Pharmacol. 839:33–39. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Gallolu Kankanamalage S, Karra AS and Cobb
MH: WNK pathways in cancer signaling networks. Cell Commun Signal.
16:722018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liao JY, Wu J, Wang YJ, He JH, Deng WX, Hu
K, Zhang YC, Zhang Y, Yan H, Wang DL, et al: Deep sequencing
reveals a global reprogramming of lncRNA transcriptome during EMT.
Biochim Biophys Acta Mol Cell Res. 1864:1703–1713. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Suriyamurthy S, Baker D, Ten Dijke P and
Iyengar PV: Epigenetic reprogramming of TGF-β signaling in breast
cancer. Cancers (Basel). 11:E7262019. View Article : Google Scholar
|