1
|
Bavarsad K, Riahi MM, Saadat S, Barreto G,
Atkin SL and Sahebkar A: Protective effects of curcumin against
ischemia-reperfusion injury in the liver. Pharmacol Res. 141:53–62.
2019. View Article : Google Scholar
|
2
|
Linecker M, Frick L, Kron P, Limani P,
Kambakamba P, Tschuor C, Langiewicz M, Kachaylo E, Tian Y,
Schneider MA, et al: Exercise improves outcomes of surgery on fatty
liver in mice: A novel effect mediated by the AMPK pathway. Ann
Surg. 271:347–355. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ju C and Tacke F: Hepatic macrophages in
homeostasis and liver diseases: From pathogenesis to novel
therapeutic strategies. Cell Mol Immunol. 13:316–327. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Takemura S, Azuma H, Osada-Oka M, Kubo S,
Shibata T and Minamiyama Y: S-allyl-glutathione improves
experimental liver fibrosis by regulating Kupffer cell activation
in rats. Am J Physiol Gastrointest Liver Physiol. 314:G150–G163.
2018. View Article : Google Scholar
|
5
|
Elsegood CL, Chan CW, Degli-Esposti MA,
Wikstrom ME, Domenichini A, Lazarus K, van Rooijen N, Ganss R,
Olynyk JK and Yeoh GC: Kupffer cell-monocyte communication is
essential for initiating murine liver progenitor cell-mediated
liver regeneration. Hepatology. 62:1272–1284. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zigmond E, Samia-Grinberg S, Pasmanik-Chor
M, Brazowski E, Shibolet O, Halpern Z and Varol C: Infiltrating
monocyte-derived macrophages and resident kupffer cells display
different ontogeny and functions in acute liver injury. J Immunol.
193:344–353. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hu Y, Yang C, Shen G, Yang S, Cheng X,
Cheng F, Rao J and Wang X: Hyperglycemia-triggered
sphingosine-1-phosphate and sphingosine-1-phosphate receptor 3
signaling worsens liver ischemia/reperfusion injury by regulating
M1/M2 polarization. Liver Transpl. 25:1074–1090. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zheng D, Li Z, Wei X, Liu R, Shen A, He D,
Tang C and Wu Z: Role of miR-148a in mitigating hepatic
ischemia-reperfusion injury by repressing the TLR4 signaling
pathway via targeting CaMKIIα in vivo and in vitro. Cell Physiol
Biochem. 49:2060–2072. 2018. View Article : Google Scholar
|
9
|
Raptis DA, Limani P, Jang JH, Ungethüm U,
Tschuor C, Graf R, Humar B and Clavien PA: GPR120 on Kupffer cells
mediates hepa-toprotective effects of ω3-fatty acids. J Hepatol.
60:625–632. 2014. View Article : Google Scholar
|
10
|
Allaire M, Rautou PE, Codogno P and
Lotersztajn S: Autophagy in liver diseases: Time for translation? J
Hepatol. 70:985–998. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Choi Y, Bowman JW and Jung JU: Autophagy
during viral infection-a double-edged sword. Nat Rev Microbiol.
16:341–354. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang JH, Ahn IS, Fischer TD, Byeon JI,
Dunn WA JR, Behrns KE, Leeuwenburgh C and Kim JS: Autophagy
suppresses age-dependent ischemia and reperfusion injury in livers
of mice. Gastroenterology. 141:2188–2199. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rickenbacher A, Jang JH, Limani P,
Ungethüm U, Lehmann K, Oberkofler CE, Weber A, Graf R, Humar B and
Clavien PA: Fasting protects liver from ischemic injury through
Sirt1-mediated downregulation of circulating HMGB1 in mice. J
Hepatol. 61:301–308. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang JH, Behrns KE, Leeuwenburgh C and Kim
JS: Critical role of autophage in ischemia/reperfusion injury to
aged livers. Autophagy. 8:140–141. 2012. View Article : Google Scholar :
|
15
|
Nakamura K, Kageyama S, Yue S, Huang J,
Fujii T, Ke B, Sosa RA, Reed EF, Datta N, Zarrinpar A, et al: Heme
oxygenase-1 regulates sirtuin-1-autophagy pathway in liver
transplantation: From mouse to human. Am J Transplant.
18:1110–1121. 2018. View Article : Google Scholar
|
16
|
Zaouali MA, Boncompagni E, Reiter RJ,
Bejaoui M, Freitas I, Pantazi E, Folch-Puy E, Abdennebi HB,
Garcia-Gil FA and Roselló-Catafau J: AMPK involvement in
endoplasmic reticulum stress and autophagy modulation after fatty
liver graft preservation: A role for melatonin and trimetazidine
cocktail. J Pineal Res. 55:65–78. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Quesnelle KM, Bystrom PV and
Toledo-Pereyra LH: Molecular responses to ischemia and reperfusion
in the liver. Arch Toxicol. 89:651–657. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y,
Haseeb M, Tanaka KE and Czaja MJ: Impaired macrophage autophagy
increases the immune response in obese mice by promoting
proinflammatory macrophage polarization. Autophagy. 11:271–284.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nakahira K, Haspel JA, Rathinam VA, Lee
SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim
HP, et al: Autophagy proteins regulate innate immune responses by
inhibiting the release of mitochondrial DNA mediated by the NALP3
inflammasome. Nat Immunol. 12:222–230. 2011. View Article : Google Scholar
|
20
|
Sun Y, Sun Y, Yue S, Wang Y and Lu F:
Histone deacetylase inhibitors in cancer therapy. Curr Top Med
Chem. 18:2420–2428. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Glauben R, Batra A, Stroh T, Erben U,
Fedke I, Lehr HA, Leoni F, Mascagni P, Dinarello CA, Zeitz M and
Siegmund B: Histone deacetylases: Novel targets for prevention of
colitis-associated cancer in mice. Gut. 57:613–622. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Leoni F, Zaliani A, Bertolini G, Porro G,
Pagani P, Pozzi P, Donà G, Fossati G, Sozzani S, Azam T, et al: The
antitumor histone deacetylase inhibitor suberoylanilide hydroxamic
acid exhibits antiinflammatory properties via suppression of
cytokines. Proc Natl Acad Sci USA. 99:2995–3000. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Choi SW, Gatza E, Hou G, Sun Y, Whitfield
J, Song Y, Oravecz-Wilson K, Tawara I, Dinarello CA and Reddy P:
Histone deacetylase inhibition regulates inflammation and enhances
Tregs after allogeneic hematopoietic cell transplantation in
humans. Blood. 125:815–819. 2015. View Article : Google Scholar :
|
24
|
Xie M, Kong Y, Tan W, May H, Battiprolu
PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G, et al: Histone
deacetylase inhibition blunts ischemia/reperfusion injury by
inducing cardio-myocyte autophagy. Circulation. 129:1139–1151.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang J, Wang J, Zhou Z, Park JE, Wang L,
Wu S, Sun X, Lu L, Wang T, Lin Q, et al: Importance of TFEB
acetylation in control of its transcriptional activity and
lysosomal function in response to histone deacetylase inhibitors.
Autophagy. 14:1043–1059. 2018.PubMed/NCBI
|
26
|
Chiao MT, Cheng WY, Yang YC, Shen CC and
Ko JL: Suberoylanilide hydroxamic acid (SAHA) causes tumor growth
slowdown and triggers autophagy in glioblastoma stem cells.
Autophagy. 9:1509–1526. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang P, Guo Z, Wu Y, Hu R, Du J, He X,
Jiao X and Zhu X: Histone deacetylase inhibitors inhibit the
proliferation of gallbladder carcinoma cells by suppressing
AKT/mTOR signaling. PLoS One. 10:e01361932015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu YL, Yang PM, Shun CT, Wu MS, Weng JR
and Chen CC: Autophagy potentiates the anti-cancer effects of the
histone deacetylase inhibitors in hepatocellular carcinoma.
Autophagy. 6:1057–1065. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hrzenjak A, Kremser ML, Strohmeier B,
Moinfar F, Zatloukal K and Denk H: SAHA induces
caspase-independent, autophagic cell death of endometrial stromal
sarcoma cells by influencing the mTOR pathway. J Pathol.
216:495–504. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang X, Ikejima K, Kon K, Arai K, Aoyama
T, Okumura K, Abe W, Sato N and Watanabe S: Ursolic acid
ameliorates hepatic fibrosis in the rat by specific induction of
apoptosis in hepatic stellate cells. J Hepatol. 55:379–387. 2011.
View Article : Google Scholar
|
31
|
Fan Z, Li L, Li M, Zhang X, Hao C, Yu L,
Zeng S, Xu H, Fang M, Shen A, et al: The histone methyltransferase
Suv39h2 contributes to nonalcoholic steatohepatitis in mice.
Hepatology. 65:1904–1919. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cremer TJ, Shah P, Cormet-Boyaka E,
Valvano MA, Butchar JP and Tridandapani S: Akt-mediated
proinflammatory response of mononuclear phagocytes infected with
Burkholderia cenocepacia occurs by a novel GSK3β-dependent, IκB
kinase-independent mechanism. J Immunol. 187:635–643. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu A, Guo E, Yang J, Yang Y, Liu S, Jiang
X, Hu Q, Dirsch O, Dahmen U, Zhang C, et al: Young plasma reverses
age-dependent alterations in hepatic function through the
restoration of autophagy. Aging Cell. 17:2018. View Article : Google Scholar
|
34
|
Kamada N and Calne RY: Orthotopic liver
transplantation in the rat. Technique using cuff for portal vein
anastomosis and biliary drainage. Transplantation. 28:47–50. 1979.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li PZ, Li JZ, Li M, Gong JP and He K: An
efficient method to isolate and culture mouse Kupffer cells.
Immunol Lett. 158:52–56. 2014. View Article : Google Scholar
|
36
|
Zeng WQ, Zhang JQ, Li Y, Yang K, Chen YP
and Liu ZJ: A new method to isolate and culture rat kupffer cells.
PLoS One. 8:e708322013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Piao X, Yamazaki S, Komazawa-Sakon S,
Miyake S, Nakabayashi O, Kurosawa T, Mikami T, Tanaka M, Van
Rooijen N, Ohmuraya M, et al: Depletion of myeloid cells
exacerbates hepatitis and induces an aberrant increase in histone
H3 in mouse serum. Hepatology. 65:237–252. 2017. View Article : Google Scholar
|
38
|
Pan G, Zhao Z, Tang C, Ding L, Li Z, Zheng
D, Zong L and Wu Z: Soluble fibrinogen-like protein 2 ameliorates
acute rejection of liver transplantation in rat via inducing
Kupffer cells M2 polarization. Cancer Med Cancer Med. 7:3168–3177.
2018. View Article : Google Scholar
|
39
|
Yang J, He J, Ismail M, Tweeten S, Zeng F,
Gao L, Ballinger S, Young M, Prabhu SD, Rowe GC, et al: HDAC
inhibition induces autophagy and mitochondrial biogenesis to
maintain mitochondrial homeostasis during cardiac
ischemia/reperfusion injury. J Mol Cell Cardiol. 130:36–48. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Kang JW, Cho HI and Lee SM: Melatonin
Inhibits mTOR-Dependent Autophagy during Liver
Ischemia/Reperfusion. Cell Physiol Biochem. 33:23–36. 2014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hsieh IN, Liou JP, Lee HY, Lai MJ, Li YH
and Yang CR: Preclinical anti-arthritic study and pharmacokinetic
properties of a potent histone deacetylase inhibitor MPT0G009. Cell
Death Dis. 5:e11662014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Luo X, Wang D, Zhu X, Wang G, You Y, Ning
Z, Li Y, Jin S, Huang Y, Hu Y, et al: Autophagic degradation of
caveolin-1 promotes liver sinusoidal endothelial cells
defenestration. Cell Death Dis. 9:5762018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li P, Liu H, Zhang Y, Liao R, He K, Ruan X
and Gong J: Endotoxin tolerance inhibits degradation of tumor
necrosis factor receptor-associated factor 3 by suppressing pellino
1 expression and the K48 ubiquitin ligase activity of cellular
inhibitor of apoptosis protein 2. J Infect Dis. 214:906–915. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
45
|
Sun HY, Hu YJ, Zhao XY, Zhong Y, Zeng LL,
chen XB, Yuan J, Wu J, Sun Y, Kong W and Kong WJ: Age-related
changes in mitochondrial antioxidant enzyme Trx2 and
TXNIP-Trx2-ASK1 signal pathways in the auditory cortex of a mimetic
aging rat model: Changes to Trx2 in the auditory cortex. FEBS J.
282:2758–2774. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nakamura K, Kageyama S, Ito T, Hirao H,
Kadono K, Aziz A, Dery KJ, Everly MJ, Taura K, Uemoto S, et al:
Antibiotic pretreatment alleviates liver transplant damage in mice
and humans. J Clin Invest. 129:3420–3434. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu H, Dong J, Song S, Zhao Y, Wang J, Fu
Z and Yang J: Spermidine ameliorates liver ischaemia-reperfusion
injury through the regulation of autophagy by the AMPK-mTOR-ULK1
signalling pathway. Biochem Biophys Res Commun. 519:227–233. 2019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu A, Yang J, Hu Q, Dirsch O, Dahmen U,
Zhang C, Gewirtz DA, Fang H and Sun J: Young plasma attenuates
age-dependent liver ischemia reperfusion injury. FASEB J.
33:3063–3073. 2019. View Article : Google Scholar
|
49
|
Ratay ML, Balmert SC, Bassin EJ and Little
SR: Controlled release of an HDAC inhibitor for reduction of
inflammation in dry eye disease. Acta Biomater. 71:261–270. 2018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Schmieder A, Michel J, Schönhaar K, Goerdt
S and Schledzewski K: Differentiation and gene expression profile
of tumor-associated macrophages. Semin Cancer Biol. 22:289–297.
2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang J, Koh HW, Zhou L, Bae UJ, Lee HS,
Bang IH, Ka SO, Oh SH, Bae EJ and Park BH: Sirtuin 2 aggravates
postischemic liver injury by deacetylating mitogen-activated
protein kinas-ephosphatase-1. Hepatology. 65:225–236. 2017.
View Article : Google Scholar
|
52
|
Tsung A, Klune JR, Zhang X, Jeyabalan G,
Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR and Billiar TR:
HMGB1 release induced by liver ischemia involves toll-like receptor
4 dependent reactive oxygen species production and calcium-mediated
signaling. J Exp Med. 204:2913–2923. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tasnim F, Xing J, Huang X, Mo S, Wei X,
Tan MH and Yu H: Generation of mature kupffer cells from human
induced pluripotent stemcells. Biomaterials. 192:377–391. 2019.
View Article : Google Scholar
|
54
|
Zhang J, Ng S, Wang J, Zhou J, Tan SH,
Yang N, Lin Q, Xia D and Shen HM: Histone deacetylase inhibitors
induce autophagy through FOXO1-dependent pathways. Autophagy.
11:629–642. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Hancock WW, Akimova T, Beier UH, Liu Y and
Wang L: HDAC inhibitor therapy in autoimmunity and transplantation.
Ann Rheum Dis. 71(Suppl 2): i46–i54. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yamamoto A and Yue Z: Autophagy and its
normal and pathogenic states in the brain. Annu Rev Neurosci.
37:55–78. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lee JP, Foote A, Fan H, Peral de Castro C,
Lang T, Jones SA, Gavrilescu N, Mills KH, Leech M, Morand EF and
Harris J: Loss of autophagy enhances MIF/macrophage migration
inhibitory factor release by macrophages. Autophagy. 12:907–916.
2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tal MC, Sasai M, Lee HK, Yordy B, Shadel
GS and Iwasaki A: Absence of autophagy results in reactive oxygen
species-dependent amplification of RLR signaling. Proc Natl Acad
Sci USA. 106:2770–2775. 2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Castillo EF, Dekonenko A, Arko-Mensah J,
Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS,
Bhattacharya D, Yang H, Hutt J, et al: Autophagy protects against
active tuberculosis by suppressing bacterial burden and
inflammation. Proc Natl Acad Sci USA. 109:E3168–E3176. 2012.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Eisenberg T, Abdellatif M, Schroeder S,
Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann
A, Schmidt A, et al: Cardioprotection and lifespan extension by the
natural polyamine spermidine. Nat Med. 22:1428–1438. 2016.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci
B, Xie Y, Carlson D, Rothermel BA, Sun Y, et al: Beclin-1-dependent
autophagy protects the heart during sepsis. Circulation.
138:2247–2262. 2018. View Article : Google Scholar : PubMed/NCBI
|