1
|
Ray WZ and Mackinnon SE: Management of
nerve gaps: Autografts, allografts, nerve transfers, and
end-to-side neurorrhaphy. Exp Neurol. 223:77–85. 2010. View Article : Google Scholar :
|
2
|
Du J, Liu J, Yao S, Mao H, Peng J, Sun X,
Cao Z, Yang Y, Xiao B, Wang Y, et al: Prompt peripheral nerve
regeneration induced by a hierarchically aligned fibrin nanofiber
hydrogel. Acta Biomater. 55:296–309. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Scheib J and Höke A: Advances in
peripheral nerve regeneration. Nat Rev Neurol. 9:668–676. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Allodi I, Udina E and Navarro X:
Specificity of peripheral nerve regeneration: Interactions at the
axon level. Prog Neurobiol. 98:16–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vargas ME and Barres BA: Why is Wallerian
degeneration in the CNS so slow? Annu Rev Neurosci. 30:153–179.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Han B, Zhao JY, Wang WT, Li ZW, He AP and
Song XY: Cdc42 promotes schwann cell proliferation and migration
through Wnt/β-catenin and p38 MAPK signaling pathway after sciatic
nerve injury. Neurochem Res. 42:1317–1324. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Taya M and Hammes SR: Glycoprotein
non-metastatic melanoma protein B (GPNMB) and cancer: A novel
potential therapeutic target. Steroids. 133:102–107. 2018.
View Article : Google Scholar :
|
8
|
Huang JJ, Ma WJ and Yokoyama S: Expression
and immunolocalization of Gpnmb, a glioma-associated glycoprotein,
in normal and inflamed central nervous systems of adult rats. Brain
Behav. 2:85–96. 2012. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Hu X, Zhang P, Xu Z, Chen H and Xie X:
GPNMB enhances bone regeneration by promoting angiogenesis and
osteogenesis: Potential role for tissue engineering bone. J Cell
Biochem. 114:2729–2737. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang YL, Hu YJ and Zhang FH: Effects of
GPNMB on proliferation and odontoblastic differentiation of human
dental pulp cells. Int J Clin Exp Pathol. 8:6498–6504.
2015.PubMed/NCBI
|
11
|
Ono Y, Tsuruma K, Takata M, Shimazawa M
and Hara H: Glycoprotein nonmetastatic melanoma protein B
extracellular fragment shows neuroprotective effects and activates
the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep.
6:232412016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nakano Y, Suzuki Y, Takagi T, Kitashoji A,
Ono Y, Tsuruma K, Yoshimura S, Shimazawa M, Iwama T and Hara H:
Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel
neuroprotective factor in cerebral ischemia-reperfusion injury.
Neuroscience. 277:123–131. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nagahara Y, Shimazawa M, Ohuchi K, Ito J,
Takahashi H, Tsuruma K, Kakita A and Hara H: GPNMB ameliorates
mutant TDP-43-induced motor neuron cell death. J Neurosci Res.
95:1647–1665. 2017. View Article : Google Scholar
|
14
|
Shi GD, Cheng X, Zhou XH, Fan BY, Ren YM,
Lin W, Zhang XL, Liu S, Hao Y, Wei ZJ and Feng SQ: iTRAQ-based
proteomics profiling of Schwann cells before and after peripheral
nerve injury. Iran J Basic Med Sci. 21:832–841. 2018.PubMed/NCBI
|
15
|
Kang W, Sun T, Tang D, Zhou J and Feng Q:
Time-course transcriptome analysis of gingiva-derived mesenchymal
stem cells reveals that fusobacterium nucleatum triggers oncogene
expression in the process of cell differentiation. Front Cell Dev
Biol. 7:3592020. View Article : Google Scholar :
|
16
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
The Gene Ontology Consortium: The gene
ontology resource: 20 years and still GOing strong. Nucleic Acids
Res. 47(D1): D330–D338. 2019. View Article : Google Scholar :
|
18
|
Kanehisa M, Sato Y, Furumichi M, Morishima
K and Tanabe M: New approach for understanding genome variations in
KEGG. Nucleic Acids Res. 47(D1): D590–D595. 2019. View Article : Google Scholar :
|
19
|
Zheng Y, Huang C, Liu F, Lin H, Niu Y,
Yang X and Zhang Z: Reactivation of denervated Schwann cells by
neurons induced from bone marrow-derived mesenchymal stem cells.
Brain Res Bull. 139:211–223. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)). method Methods. 25:402–408. 2001.
View Article : Google Scholar
|
21
|
Ren T, Yu S, Mao Z and Gao C: A
complementary density gradient of zwitterionic polymer brushes and
NCAM peptides for selectively controlling directional migration of
Schwann cells. Biomaterials. 56:58–67. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Weterman MA, Ajubi N, van Dinter IM, Degen
WG, van Muijen GN, Ruitter DJ and Bloemers HP: nmb, a novel gene,
is expressed in low-metastatic human melanoma cell lines and
xenografts. Int J Cancer. 60:73–81. 1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tanaka H, Shimazawa M, Kimura M, Takata M,
Tsuruma K, Yamada M, Takahashi H, Hozumi I, Niwa J, Iguchi Y, et
al: The potential of GPNMB as novel neuroprotective factor in
amyotrophic lateral sclerosis. Sci Rep. 2:5732012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nagahara Y, Shimazawa M, Tanaka H, Ono Y,
Noda Y, Ohuchi K, Tsuruma K, Katsuno M, Sobue G and Hara H:
Glycoprotein nonmetastatic melanoma protein B ameliorates skeletal
muscle lesions in a SOD1G93A mouse model of amyotrophic lateral
sclerosis. J Neurosci Res. 93:1552–1566. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gu X, Ding F, Yang Y and Liu J:
Construction of tissue engineered nerve grafts and their
application in peripheral nerve regeneration. Prog Neurobiol.
93:204–230. 2011. View Article : Google Scholar
|
26
|
Parrinello S, Napoli I, Ribeiro S,
Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RD, Nakayama
M, Adams RH and Lloyd AC: EphB signaling directs peripheral nerve
regeneration through Sox2-dependent Schwann cell sorting. Cell.
143:145–155. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hall SM: The biology of chronically
denervated Schwann cells. Ann N Y Acad Sci. 883:215–233. 1999.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Metz RL, Yehia G, Fernandes H, Donnelly RJ
and Rameshwar P: Cloning and characterization of the 5′ flanking
region of the HGFIN gene indicate a cooperative role among p53 and
cytokine-mediated transcription factors: Relevance to cell cycle
regulation. Cell Cycle. 4:315–322. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Metz RL, Patel PS, Hameed M, Bryan M and
Rameshwar P: Role of human HGFIN/nmb in breast cancer. Breast
Cancer Res. 9:R582007. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Xu QG, Midha R, Martinez JA, Guo GF and
Zochodne DW: Facilitated sprouting in a peripheral nerve injury.
Neuroscience. 152:877–887. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li R, Li Y, Wu Y, Zhao Y, Chen H, Yuan Y,
Xu K, Zhang H, Lu Y, Wang J, et al: Heparin-poloxamer
thermosensitive hydrogel loaded with bFGF and NGF enhances
peripheral nerve regeneration in diabetic rats. Biomaterials.
168:24–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hei WH, Almansoori AA, Sung MA, Ju KW, Seo
N, Lee SH, Kim BJ, Kim SM, Jahng JW, He H and Lee JH: Adenovirus
vector-mediated ex vivo gene transfer of brain-derived neurotrophic
factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem
cells (UCB-MSCs) promotescrush-injured rat sciatic nerve
regeneration. Neurosci Lett. 643:111–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sahenk Z, Nagaraja HN, McCracken BS, King
WM, Freimer ML, Cedarbaum JM and Mendell JR: NT-3 promotes nerve
regeneration and sensory improvement in CMT1A mouse models and in
patients. Neurology. 65:681–689. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Clements MP, Byrne E, Camarillo Guerrero
LF, Cattin AL, Zakka L, Ashraf A, Burden JJ, Khadayate S, Lloyd AC,
Marguerat S and Parrinello S: The wound microenvironment reprograms
schwann cells to invasive mesenchymal-like cells to drive
peripheral nerve regeneration. Neuron. 96:98–114.e7. 2017.
View Article : Google Scholar : PubMed/NCBI
|