1
|
Chen Q, Zhang H, Liu Y, Adams S, Eilken H,
Stehling M, Corada M, Dejana E, Zhou B and Adams RH: Endothelial
cells are progenitors of cardiac pericytes and vascular smooth
muscle cells. Nat Commun. 7:124222016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gibbons GH and Dzau VJ: The emerging
concept of vascular remodeling. N Engl J Med. 330:1431–1438. 1994.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Davis GE and Senger DR: Endothelial
extracellular matrix: Biosynthesis, remodeling, and functions
during vascular morphogenesis and neovessel stabilization. Circ
Res. 97:1093–1107. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Karimi Galougahi K, Ashley EA and Ali ZA:
Redox regulation of vascular remodeling. Cell Mol Life Sci.
73:349–363. 2016. View Article : Google Scholar
|
5
|
Zhang B, Niu W, Dong HY, Liu ML, Luo Y and
Li ZC: Hypoxia induces endothelial-mesenchymal transition in
pulmonary vascular remodeling. Int J Mol Med. 42:270–278.
2018.PubMed/NCBI
|
6
|
Jackson AO, Zhang J, Jiang Z and Yin K:
Endothelial-to-mesenchymal transition: A novel therapeutic target
for cardiovascular diseases. Trends Cardiovasc Med. 27:383–393.
2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang L, Li YM, Zeng XX, Wang XY, Chen SK,
Gui LX and Lin MJ: Galectin-3-mediated transdifferentiation of
pulmonary artery endothelial cells contributes to hypoxic pulmonary
vascular remodeling. Cell Physiol Biochem. 51:763–777. 2018.
View Article : Google Scholar
|
8
|
Wesseling M, Sakkers TR, de Jager SCA,
Pasterkamp G and Goumans MJ: The morphological and molecular
mechanisms of epithelial/endothelial-to-mesenchymal transition and
its involvement in atherosclerosis. Vascul Pharmacol. 106:1–8.
2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang Y, Wu X, Li Y, Zhang H, Li Z, Zhang
Y, Zhang L, Ju J, Liu X, Chen X, et al: Endothelial to mesenchymal
transition contributes to arsenic-trioxide-induced cardiac
fibrosis. Sci Rep. 6:337872016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tian D, Zeng X, Wang W, Wang Z, Zhang Y
and Wang Y: Protective effect of rapamycin on
endothelial-to-mesenchymal transition in HUVECs through the Notch
signaling pathway. Vascul Pharmacol. 113:20–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kanasaki K, Taduri G and Koya D: Diabetic
nephropathy: The role of inflammation in fibroblast activation and
kidney fibrosis. Front Endocrinol (Lausanne). 4:72013. View Article : Google Scholar
|
12
|
Xiong J, Kawagishi H, Yan Y, Liu J, Wells
QS, Edmunds LR, Fergusson MM, Yu ZX, Rovira II, Brittain EL, et al:
A metabolic basis for endothelial-to-mesenchymal transition. Mol
Cell. 69:689–698.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu QC, Song W, Wang D and Zeng YA:
Identification of blood vascular endothelial stem cells by the
expression of protein C receptor. Cell Res. 26:1079–1098. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Cooley BC, Nevado J, Mellad J, Yang D, St
Hilaire C, Negro A, Fang F, Chen G, San H, Walts AD, et al: TGF-β
signaling mediates endothelial-to-mesenchymal transition (EndMT)
during vein graft remodeling. Sci Transl Med. 6:227ra342014.
View Article : Google Scholar
|
15
|
Vanchin B, Offringa E, Friedrich J,
Brinker MG, Kiers B, Pereira AC, Harmsen MC, Moonen JA and Krenning
G: MicroRNA-374b induces endothelial-to-mesenchymal transition and
early lesion formation through the inhibition of MAPK7 signaling. J
Pathol. 247:456–470. 2019. View Article : Google Scholar :
|
16
|
Suzuki T, Carrier EJ, Talati MH,
Rathinasabapathy A, Chen X, Nishimura R, Tada Y, Tatsumi K and West
J: Isolation and characterization of endothelial-to-mesenchymal
transition cells in pulmonary arterial hypertension. Am J Physiol
Lung Cell Mol Physiol. 314:L118–L126. 2018. View Article : Google Scholar :
|
17
|
Li J, Xiong J, Yang B, Zhou Q, Wu Y, Luo
H, Zhou H, Liu N, Li Y, Song Z and Zheng Q: Endothelial cell
apoptosis induces TGF-β signaling-dependent host
endothelial-mesenchymal transition to promote transplant
arteriosclerosis. Am J Transplant. 15:3095–3111. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang J, Yan G, Guo H, Zhu Y, Shui X, He Y,
Chen C and Lei W: ITE promotes hypoxia-induced transdifferentiation
of human pulmonary arterial endothelial cells possibly by
activating transforming growth factor-β/Smads and MAPK/ERK
pathways. J Cell Biochem. 120:19567–19577. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zuo XX, Yang Y, Zhang Y, Zhang ZG, Wang XF
and Shi YG: Platelets promote breast cancer cell MCF-7 metastasis
by direct interaction: Surface integrin α2β1-contacting-mediated
activation of Wnt-β-catenin pathway. Cell Commun Signal.
17:1422019. View Article : Google Scholar
|
20
|
Shen XC, Tao L, Li WK, Zhang YY, Luo H and
Xia YY: Evidence-based antioxidant activity of the essential oil
from fructus A. Zerumbet on cultured human umbilical vein
endothelial cells' injury induced by ox-LDL. BMC Complement Altern
Med. 12:1742012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tao L, Hu HS and Shen XC:
Endothelium-dependent vasodilatation effects of the essential oil
from Fructus alpiniae zerumbet (EOFAZ) on rat thoracic aortic rings
in vitro. Phytomedicine. 20:387–393. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Y, Li D, Xu Y, Zhang Y, Tao L, Li S,
Jiang Y and Shen X: Essential oils from fructus A. Zerumbet protect
human aortic endothelial cells from apoptosis induced by Ox-LDL in
vitro. Evid Based Complement Alternat Med. 2014:9568242014.
View Article : Google Scholar
|
23
|
Yob NJ, Jofrry SM, Affandi MM, The LK,
Salleh MZ and Zakaria ZA: Zingiber zerumbet (L.) Smith: A review of
its ethnomedicinal, chemical, and pharmacological uses. Evid Based
Complement Alternat Med. 2011:5432162011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chompoo J, Upadhyay A, Fukuta M and Tawata
S: Effect of Alpinia zerumbet components on antioxidant and skin
diseases-related enzymes. BMC Complement Altern Med. 12:1062012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
de Moura RS, Emiliano AF, de Carvalho LC,
Souza MA, Guedes DC, Tano T and Resende AC: Antihypertensive and
endothelium-dependent vasodilator effects of Alpinia zerumbet, a
medicinal plant. J Cardiovasc Pharmacol. 46:288–294. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Linghu K, Lin D, Yang H, Xu Y, Zhang Y,
Tao L, Chen Y and Shen X: Ameliorating effects of 1,8-cineole on
LPS-induced human umbilical vein endothelial cell injury by
suppressing NF-κB signaling in vitro. Eur J Pharmacol. 789:195–201.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang H, Fang Z, Qu X, Zhang X and Wang Y:
Procyanidin compound (PC) suppresses lipopolysaccharide-induced
cervical cancer cell proliferation through blocking the TLR4/NF-κB
pathway. Cancer Manag Res. 12:497–509. 2020. View Article : Google Scholar :
|
28
|
Shu Y, Liu Y, Li X, Cao L, Yuan X, Li W
and Cao Q: Aspirin-triggered resolvin D1 inhibits TGF-β1-induced
EndMT through increasing the expression of Smad7 and is closely
related to oxidative stress. Biomol Ther (Seoul). 24:132–139. 2016.
View Article : Google Scholar
|
29
|
Mahler GJ, Farrar EJ and Butcher JT:
Inflammatory cytokines promote mesenchymal transformation in
embryonic and adult valve endothelial cells. Arterioscler Thromb
Vasc Biol. 33:121–130. 2013. View Article : Google Scholar :
|
30
|
Yoshida T, Yamashita M, Iwai M and Hayashi
M: Endothelial Krüppel-like factor 4 mediates the protective effect
of statins against ischemic AKI. J Am Soc Nephrol. 27:1379–1388.
2016. View Article : Google Scholar
|
31
|
Cuttano R, Rudini N, Bravi L, Corada M,
Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH,
et al: KLF4 is a key determinant in the development and progression
of cerebral cavernous malformations. EMBO Mol Med. 8:6–24. 2016.
View Article : Google Scholar :
|
32
|
Zhou Z, Tang AT, Wong WY, Bamezai S,
Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, et al:
Cerebral cavernous malformations arise from endothelial gain of
MEKK3-KLF2/4 signalling. Nature. 532:122–126. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang N, Xu Y, Zhou H, Lin D, Zhang B,
Zhang Y, Pan D, Tao L, Liu X and Shen X: Essential oil from fructus
alpiniae zerumbet protects human umbilical vein endothelial cells
in vitro from injury induced by high glucose levels by suppressing
nuclear transcription factor-kappa B signaling. Med Sci Monit.
23:4760–4767. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu M, Liu L, Xing Y, Yang S, Li H and Cao
Y: Roles and mechanisms of hawthorn and its extracts on
atherosclerosis: A review. Front Pharmacol. 11:1182020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu W, Liu Z, An S, Zhao J, Xiao L, Gou Y,
Lin Y and Wang J: The endothelial-mesenchymal transition (EndMT)
and tissue regeneration. Curr Stem Cell Res Ther. 9:196–204. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Cruz-Solbes AS and Youker K: Epithelial to
mesenchymal transition (EMT) and endothelial to mesenchymal
transition (EndMT): Role and implications in kidney fibrosis.
Results Probl Cell Differ. 60:345–372. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pardali E, Sanchez-Duffhues G,
Gomez-Puerto MC and Ten Dijke P: TGF-β-induced
endothelial-mesenchymal transition in fibrotic diseases. Int J Mol
Sci. 18:pii: E2157. 2017. View Article : Google Scholar
|
38
|
Hao YM, Yuan HQ, Ren Z, Qu SL, Liu LS,
Dang H, Yin K, Fu M and Jiang ZS: Endothelial to mesenchymal
transition in atherosclerotic vascular remodeling. Clin Chim Acta.
490:34–38. 2019. View Article : Google Scholar
|
39
|
Geng H and Guan J: MiR-18a-5p inhibits
endothelial-mesen-chymal transition and cardiac fibrosis through
the Notch2 pathway. Biochem Biophys Res Commun. 491:329–336. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen XY, Lv RJ, Zhang W, Yan YG, Li P,
Dong WQ, Liu X, Liang ES, Tian HL, Lu QH and Zhang MX: Inhibition
of myocyte-specific enhancer factor 2A improved diabetic cardiac
fibrosis partially by regulating endothelial-to-mesenchymal
transition. Oncotarget. 7:31053–31066. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guan S and Zhou J: CXCR7 attenuates the
TGF-β-induced endothelial-to-mesenchymal transition and pulmonary
fibrosis. Mol Biosyst. 13:2116–2124. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Akhurst RJ: Targeting TGF-β signaling for
therapeutic gain. Cold Spring Harb Perspect Biol. 9:pii: a022301.
2017. View Article : Google Scholar
|
43
|
Bakhta O, Blanchard S, Guihot AL,
Tamareille S, Mirebeau-Prunier D, Jeannin P and Prunier F:
Cardioprotective role of colchicine against inflammatory injury in
a rat model of acute myocardial infarction. J Cardiovasc Pharmacol
Ther. 23:446–455. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wetzel-Strong SE, Detter MR and Marchuk
DA: The pathobiology of vascular malformations: Insights from human
and model organism genetics. J Pathol. 241:281–293. 2017.
View Article : Google Scholar
|
45
|
Fu Y, Chang A, Chang L, Niessen K, Eapen
S, Setiadi A and Karsan A: Differential regulation of transforming
growth factor beta signaling pathways by Notch in human endothelial
cells. J Biol Chem. 284:19452–19462. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Cunha SI, Magnusson PU, Dejana E and
Lampugnani MG: Deregulated TGF-β/BMP signaling in vascular
malformations. Circ Res. 121:981–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ghaleb AM and Yang VW: Krüppel-like factor
4 (KLF4): What we currently know. Gene. 611:27–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
McConnell BB, Ghaleb AM, Nandan MO and
Yang VW: The diverse functions of Krüppel-like factors 4 and 5 in
epithelial biology and pathobiology. Bioessays. 29:549–557. 2007.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang Y, Lam O, Nguyen MT, Ng G, Pear WS,
Ai W, Wang IJ, Kao WW and Liu CY: Mastermind-like transcriptional
co-activator-mediated Notch signaling is indispensable for
maintaining conjunctival epithelial identity. Development.
140:594–605. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang Y, Yang C, Gu Q, Sims M, Gu W,
Pfeffer LM and Yue J: KLF4 promotes angiogenesis by activating VEGF
signaling in human retinal microvascular endothelial cells. PLoS
One. 10:e01303412015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ji L, Zhao G, Zhang P, Huo W, Dong P,
Watari H, Jia L, Pfeffer LM, Yue J and Zheng J: Knockout of MTF1
inhibits the epithelial to mesenchymal transition in ovarian cancer
cells. J Cancer. 9:4578–4585. 2018. View Article : Google Scholar : PubMed/NCBI
|