1
|
Cross M, Smith E, Hoy D, Nolte S, Ackerman
I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, et al:
The global burden of hip and knee osteoarthritis: Estimates from
the global burden of disease 2010 study. Ann Rheum Dis.
73:1323–1330. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hugle T and Geurts J: What drives
osteoarthritis?-synovial versus subchondral bone pathology.
Rheumatology (Oxford). 56:1461–1471. 2017.
|
3
|
Adebayo OO, Ko FC, Wan PT, Goldring SR,
Goldring MB, Wright TM and van der Meulen MCH: Role of subchondral
bone properties and changes in development of load-induced
osteoarthritis in mice. Osteoarthritis Cartilage. 25:2108–2118.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kwan Tat S, Lajeunesse D, Pelletier JP and
Martel-Pelletier J: Targeting subchondral bone for treating
osteoarthritis: What is the evidence? Best Pract Res Clin
Rheumatol. 24:51–70. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hayami T, Pickarski M, Wesolowski GA,
McLane J, Bone A, Destefano J, Rodan GA and Duong LT: The role of
subchondral bone remodeling in osteoarthritis: Reduction of
cartilage degeneration and prevention of osteophyte formation by
alendronate in the rat anterior cruciate ligament transection
model. Arthritis Rheum. 50:1193–1206. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bertuglia A, Lacourt M, Girard C,
Beauchamp G, Richard H and Laverty S: Osteoclasts are recruited to
the subchondral bone in naturally occurring post-traumatic equine
carpal osteoarthritis and may contribute to cartilage degradation.
Osteoarthritis Cartilage. 24:555–566. 2016. View Article : Google Scholar
|
7
|
Bianco D, Todorov A, Čengić T, Pagenstert
G, Schären S, Netzer C, Hügle T and Geurts J: Alterations of
subchondral bone progenitor cells in human knee and hip
osteoarthritis lead to a bone sclerosis phenotype. Int J Mol Sci.
19:E4752018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao W, Wang T, Luo Q, Chen Y, Leung VY,
Wen C, Shah MF, Pan H, Chiu K, Cao X and Lu WW: Cartilage
degeneration and excessive subchondral bone formation in
spontaneous osteoarthritis involves altered TGF-β signaling. J
Orthop Res. 34:763–770. 2016. View Article : Google Scholar
|
9
|
Zhen G, Wen C, Jia X, Li Y, Crane JL,
Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, et al: Inhibition
of TGF-β signaling in mesenchymal stem cells of subchondral bone
attenuates osteoarthritis. Nat Med. 19:704–712. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhen G and Cao X: Targeting TGFβ signaling
in subchondral bone and articular cartilage homeostasis. Trends
Pharmacol Sci. 35:227–236. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cui Z, Crane J, Xie H, Jin X, Zhen G, Li
C, Xie L, Wang L, Bian Q, Qiu T, et al: Halofuginone attenuates
osteoarthritis by inhibition of TGF-beta activity and H-type vessel
formation in subchondral bone. Ann Rheum Dis. 75:1714–1721. 2016.
View Article : Google Scholar
|
12
|
Xie L, Tintani F, Wang X, Li F, Zhen G,
Qiu T, Wan M, Crane J, Chen Q and Cao X: Systemic neutralization of
TGF-β attenuates osteoarthritis. Ann N Y Acad Sci. 1376:53–64.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Aref-Eshghi E, Liu M, Harper PE, Doré J,
Martin G, Furey A, Green R, Rahman P and Zhai G: Overexpression of
MMP13 in human osteoarthritic cartilage is associated with the
SMAD-independent TGF-β signalling pathway. Arthritis Res Ther.
17:2642015. View Article : Google Scholar
|
14
|
van de Laar IM, Oldenburg RA, Pals G,
Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM,
Willemsen R, Severijnen LA, Venselaar H, et al: Mutations in SMAD3
cause a syndromic form of aortic aneurysms and dissections with
early-onset osteoarthritis. Nat Genet. 43:121–126. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Serra R, Johnson M, Filvaroff EH, LaBorde
J, Sheehan DM, Derynck R and Moses HL: Expression of a truncated,
kinase-defective TGF-beta type II receptor in mouse skeletal tissue
promotes terminal chondrocyte differentiation and osteoarthritis. J
Cell Biol. 139:541–552. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shen J, Li J, Wang B, Jin H, Wang M, Zhang
Y, Yang Y, Im HJ, O'Keefe R and Chen D: Deletion of the
transforming growth factor beta receptor type II gene in articular
chondrocytes leads to a progressive osteoarthritis-like phenotype
in mice. Arthritis Rheum. 65:3107–3119. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bakker AC, van de Loo FA, van Beuningen
HM, Sime P, van Lent PL, van der Kraan PM, Richards CD and van den
Berg WB: Overexpression of active TGF-beta-1 in the murine knee
joint: Evidence for synovial-layer-dependent chondro-osteophyte
formation. Osteoarthritis Cartilage. 9:128–136. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Klein-Nulend J, Bakker AD, Bacabac RG,
Vatsa A and Weinbaum S: Mechanosensation and transduction in
osteocytes. Bone. 54:182–190. 2013. View Article : Google Scholar
|
19
|
Chen H, Senda T and Kubo KY: The osteocyte
plays multiple roles in bone remodeling and mineral homeostasis.
Med Mol Morphol. 48:61–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nguyen J, Tang SY, Nguyen D and Alliston
T: Load regulates bone formation and Sclerostin expression through
a TGFβ-dependent mechanism. PLoS One. 8:e538132013. View Article : Google Scholar
|
21
|
Jaiprakash A, Prasadam I, Feng JQ, Liu Y,
Crawford R and Xiao Y: Phenotypic characterization of
osteoarthritic osteocytes from the sclerotic zones: A possible
pathological role in subchondral bone sclerosis. Int J Biol Sci.
8:406–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Prasadam I, Farnaghi S, Feng JQ, Gu W,
Perry S, Crawford R and Xiao Y: Impact of extracellular matrix
derived from osteoarthritis subchondral bone osteoblasts on
osteocytes role of integrinβ1 and focal adhesion kinase signaling
cues. Arthritis Res Ther. 15:R1502013. View
Article : Google Scholar
|
23
|
Dolan EB, Haugh MG, Voisin MC, Tallon D
and McNamara LM: Thermally induced osteocyte damage initiates a
remodelling signaling cascade. PLoS One. 10:e01196522015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Meo Burt P, Xiao L, Dealy C, Fisher MC and
Hurley MM: FGF2 high molecular weight isoforms contribute to
osteoarthropathy in male mice. Endocrinology. 157:4602–4614. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao C, Jiang W, Zhou N, Liao J, Yang M,
Hu N, Liang X, Xu W, Chen H, Liu W, et al: Sox9 augments
BMP2-induced chondro-genic differentiation by downregulating Smad7
in mesenchymal stem cells (MSCs). Genes Dis. 4:229–239. 2017.
View Article : Google Scholar
|
26
|
Dai Guangming RL, Chen H, Liu W, Chen Y,
He X, Liu W, Tu X and Huang W: Down-regulation of osteoeytic
TGFβ/Smad4 inhibits the osteoblastic and osteoelastic
differentiation in mouse BMSCs. Basic Clin Med. 37:786–791.
2017.
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
28
|
Stern AR, Stern M, Van Dyke ME, Jähn K,
Prideaux M and Bonewald LF: Isolation and culture of primary
osteocytes from the long bones of skeletally mature and aged mice.
BioTechniques. 52:361–373. 2012.PubMed/NCBI
|
29
|
Boregowda SV, Krishnappa V and Phinney DG:
Isolation of mouse bone marrow mesenchymal stem cells. Methods Mol
Biol. 1416:205–223. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yatabe T, Mochizuki S, Takizawa M,
Chijiiwa M, Okada A, Kimura T, Fujita Y, Matsumoto H, Toyama Y and
Okada Y: Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1)
in human osteoarthritic chondrocytes. Ann Rheum Dis. 68:1051–1058.
2009. View Article : Google Scholar :
|
31
|
Song RH, Tortorella MD, Malfait AM, Alston
JT, Yang Z, Arner EC and Griggs DW: Aggrecan degradation in human
articular cartilage explants is mediated by both ADAMTS-4 and
ADAMTS-5. Arthritis Rheum. 56:575–585. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu L, Guo H, Sun K, Zhao X, Ma T and Jin
Q: Sclerostin expression in the subchondral bone of patients with
knee osteoarthritis. Int J Mol Med. 38:1395–1402. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wood CL, Pajevic PD and Gooi JH: Osteocyte
secreted factors inhibit skeletal muscle differentiation. Bone Rep.
6:74–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan
B, Yu X, Rauch F, Davis SI, Zhang S, et al: Loss of DMP1 causes
rickets and osteomalacia and identifies a role for osteocytes in
mineral metabolism. Nat Genet. 38:1310–1315. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li X, Ominsky MS, Niu QT, Sun N, Daugherty
B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, et al: Targeted
deletion of the sclerostin gene in mice results in increased bone
formation and bone strength. J Bone Miner Res. 23:860–869. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Rosser J and Bonewald LF: Studying
osteocyte function using the cell lines MLO-Y4 and MLO-A5. Methods
Mol Biol. 816:67–81. 2012. View Article : Google Scholar
|
37
|
Kazakia GJ, Kuo D, Schooler J, Siddiqui S,
Shanbhag S, Bernstein G, Horvai A, Majumdar S, Ries M and Li X:
Bone and cartilage demonstrate changes localized to bone marrow
edema-like lesions within osteoarthritic knees. Osteoarthritis
Cartilage. 21:94–101. 2013. View Article : Google Scholar :
|
38
|
Siebelt M, Waarsing JH, Groen HC, Müller
C, Koelewijn SJ, de Blois E, Verhaar JA, de Jong M and Weinans H:
Inhibited osteoclastic bone resorption through alendronate
treatment in rats reduces severe osteoarthritis progression. Bone.
66:163–170. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nakasa T, Ishikawa M, Takada T, Miyaki S
and Ochi M: Attenuation of cartilage degeneration by calcitonin
gene-related paptide receptor antagonist via inhibition of
subchondral bone sclerosis in osteoarthritis mice. J Orthop Res.
34:1177–1184. 2016. View Article : Google Scholar
|
40
|
Xie L, Ding F, Jiao J, Kan W and Wang J:
Total Hip and Knee arthroplasty in a patient with osteopetrosis: A
case report and review of the literature. BMC Musculoskelet Disord.
16:2592015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Remst DF, Blom AB, Vitters EL, Bank RA,
van den Berg WB, Blaney Davidson EN and van der Kraan PM: Gene
expression analysis of murine and human osteoarthritis synovium
reveals elevation of transforming growth factor beta-responsive
genes in osteoarthritis-related fibrosis. Arthritis Rheumatol.
66:647–656. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li ZC, Dai LY, Jiang LS and Qiu S:
Difference in subchondral cancellous bone between postmenopausal
women with hip osteoarthritis and osteoporotic fracture:
Implication for fatigue microdamage, bone microarchitecture, and
biomechanical properties. Arthritis Rheum. 64:3955–3962. 2012.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Hinz B: The extracellular matrix and
transforming growth factor-β1: Tale of a strained relationship.
Matrix Biol. 47:54–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z,
Zhao L, Nagy TR, Peng X, Hu J, et al: TGF-beta1-induced migration
of bone mesenchymal stem cells couples bone resorption with
formation. Nat Med. 15:757–765. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zarei A, Hulley PA, Sabokbar A and Javaid
MK: Co-expression of DKK-1 and sclerostin in subchondral bone of
the proximal femoral heads from osteoarthritic hips. Calcif Tissue
Int. 100:609–618. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bouaziz W, Funck-Brentano T, Lin H, Marty
C, Ea HK, Hay E and Cohen-Solal M: Loss of sclerostin promotes
osteoarthritis in mice via β-catenin-dependent and -independent Wnt
pathways. Arthritis Res Ther. 17:242015. View Article : Google Scholar
|
47
|
Loots GG, Keller H, Leupin O, Murugesh D,
Collette NM and Genetos DC: TGF-β regulates sclerostin expression
via the ECR5 enhancer. Bone. 50:663–669. 2012. View Article : Google Scholar
|
48
|
Li C, Wang W, Xie L, Luo X, Cao X and Wan
M: Lipoprotein receptor-related protein 6 is required for
parathyroid hormone-induced Sost suppression. Ann N Y Acad Sci.
1364:62–73. 2016. View Article : Google Scholar
|
49
|
Ansari N, Ho PW, Crimeen-Irwin B, Poulton
IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ and
Sims NA: Autocrine and paracrine regulation of the murine skeleton
by osteocyte-derived parathyroid hormone-related protein. J Bone
Miner Res. 33:137–153. 2018. View Article : Google Scholar
|