1
|
Rosebush MS, Rao SK, Samant S, Gu W,
Handorf CR, Pfeffer LM and Nosrat CA: Oral cancer: Enduring
characteristics and emerging trends. J Mich Dent Assoc. 94:64–68.
2012.PubMed/NCBI
|
2
|
Tang Q, Cheng B, Xie M, Chen Y, Zhao J,
Zhou X and Chen L: Circadian clock gene Bmal1 inhibits
tumorigenesis and increases paclitaxel sensitivity in tongue
squamous cell carcinoma. Cancer Res. 77:532–544. 2017. View Article : Google Scholar
|
3
|
Sano D and Myers JN: Metastasis of
squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev.
26:645–662. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kimple AJ, Welch CM, Zevallos JP and Patel
SN: Oral cavity squamous cell carcinoma-an overview. Oral Health
Dent Manag. 13:877–882. 2014.PubMed/NCBI
|
5
|
Schwam ZG and Judson BL: Improved
prognosis for patients with oral cavity squamous cell carcinoma:
Analysis of the national cancer database 1998-2006. Oral Oncol.
52:45–51. 2016. View Article : Google Scholar
|
6
|
Taghavi N and Yazdi I: Prognostic factors
of survival rate in oral squamous cell carcinoma: Clinical,
histologic, genetic and molecular concepts. Arch Iran Med.
18:314–319. 2015.PubMed/NCBI
|
7
|
Mucke T, Kanatas A, Ritschl LM, Koerdt S,
Tannapfel A, Wolff KD, Loeffelbein D and Kesting M: Tumor thickness
and risk of lymph node metastasis in patients with squamous cell
carcinoma of the tongue. Oral Oncol. 53:80–84. 2016. View Article : Google Scholar
|
8
|
Sgaramella N, Gu X, Boldrup L, Coates PJ,
Fahraeus R, Califano L, Tartaro G, Colella G, Spaak LN, Strom A, et
al: Searching for new targets and treatments in the battle against
squamous cell carcinoma of the head and neck, with specific focus
on tumours of the tongue. Curr Top Med Chem. 18:214–218. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Nakagawa S and Kageyama Y: Nuclear lncRNAs
as epigenetic regulators-beyond skepticism. Biochim Biophys Acta.
1839:215–222. 2014. View Article : Google Scholar
|
10
|
Sanbonmatsu KY: Towards structural
classification of long non-coding RNAs. Biochim Biophys Acta.
1859:41–45. 2016. View Article : Google Scholar
|
11
|
Liu Y, Yin L, Chen C, Zhang X and Wang S:
Long non-coding RNA GAS5 inhibits migration and invasion in gastric
cancer via interacting with p53 protein. Dig Liver Dis. 52:331–338.
2020. View Article : Google Scholar
|
12
|
Gou L, Zou H and Li B: Long noncoding RNA
MALAT1 knockdown inhibits progression of anaplastic thyroid
carcinoma by regulating miR-200a 3p/FOXA1. Cancer Biol Ther.
20:1355–1365. 2019. View Article : Google Scholar
|
13
|
Cao SQ, Zheng H, Sun BC, Wang ZL, Liu T,
Guo DH and Shen ZY: Long non-coding RNA highly up-regulated in
liver cancer promotes exosome secretion. World J Gastroenterol.
25:5283–5299. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ma L, Wang Q, Gong Z, Xue L and Zuo Z:
Long noncoding RNA GIHCG enhanced tongue squamous cell carcinoma
progression through regulating miR-429. J Cell Biochem.
119:9064–9071. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou RS, Zhang EX, Sun QF, Ye ZJ, Liu JW,
Zhou DH and Tang Y: Integrated analysis of lncRNA-miRNA-mRNA ceRNA
network in squamous cell carcinoma of tongue. BMC Cancer.
19:7792019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jia B, Xie T, Qiu X, Sun X, Chen J, Huang
Z, Zheng X, Wang Z and Zhao J: Long noncoding RNA FALEC inhibits
proliferation and metastasis of tongue squamous cell carcinoma by
epigenetically silencing ECM1 through EZH2. Aging. 11:4990–5007.
2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang H, Fu G, Liu F, Hu C, Lin J, Tan Z,
Fu Y, Ji F and Cao M: LncRNA THOR promotes tongue squamous cell
carcinomas by stabilizing IGF2BP1 downstream targets. Biochimie.
165:9–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Song Y, Pan Y and Liu J: Functional
analysis of lncRNAs based on competitive endogenous RNA in tongue
squamous cell carcinoma. PeerJ. 7:e69912019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Y, Wan Q, Wang W, Mai L, Sha L, Mashrah
M, Lin Z and Pan C: LncRNA ADAMTS9-AS2 promotes tongue squamous
cell carcinoma proliferation, migration and EMT via the
miR-600/EZH2 axis. Biomed Pharmacother. 112:1087192019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng C, So HI, Yin S, Xu Q, Wang S, Duan
W, Zhang E, Sun C and Xu Z: MicroRNA-532-3p suppresses malignant
behaviors of tongue squamous cell carcinoma via regulating CCR7.
Front Pharmacol. 10:9402019. View Article : Google Scholar :
|
22
|
Shi B, Yan W, Liu G and Guo Y:
MicroRNA-488 inhibits tongue squamous carcinoma cell invasion and
EMT by directly targeting ATF3. Cell Mol Biol Lett. 23:282018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gu Y, Liu H, Kong F, Ye J, Jia X, Zhang Z,
Li N, Yin J, Zheng G and He Z: miR-22/KAT6B axis is a
chemotherapeutic determiner via regulation of PI3k-Akt-NF-kB
pathway in tongue squamous cell carcinoma. J Exp Clin Cancer Res.
37:1642018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang L, Qiu M, Xu Y, Wang J, Zheng Y, Li
M, Xu L and Yin R: Upregulation of long non-coding RNA PRNCR1 in
colorectal cancer promotes cell proliferation and cell cycle
progression. Oncol Rep. 35:318–324. 2016. View Article : Google Scholar
|
25
|
Cheng D, Bao C, Zhang X, Lin X, Huang H
and Zhao L: LncRNA PRNCR1 interacts with HEY2 to abolish
miR-448-mediated growth inhibition in non-small cell lung cancer.
Biomed Pharmacother. 107:1540–1547. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Y and Zhao F: MicroRNA758 inhibits
tumorous behavior in tongue squamous cell carcinoma by directly
targeting metadherin. Mol Med Rep. 19:1883–1890. 2019.PubMed/NCBI
|
27
|
Jiao D, Liu Y and Tian Z: microRNA-493
inhibits tongue squamous cell carcinoma oncogenicity via directly
targeting HMGA2. Onco Targets Ther. 12:6947–6959. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42:D92–D97. 2014. View Article : Google Scholar
|
30
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:2015. View Article : Google Scholar
|
31
|
Chen Y and Wang X: miRDB: An online
database for prediction of functional microRNA targets. Nucleic
Acids Res. 48(D1): D127–D131. 2020. View Article : Google Scholar :
|
32
|
Wang J, Xiao T and Zhao M: MicroRNA-675
directly targets MAPK1 to suppress the oncogenicity of papillary
thyroid cancer and is sponged by long non-coding RNA RMRP. Onco
Targets Ther. 12:7307–7321. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao Q, Wu C, Wang J, Li X, Fan Y, Gao S
and Wang K: LncRNA SNHG3 promotes hepatocellular tumorigenesis by
targeting miR-326. Tohoku J Exp Med. 249:43–56. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kong L, Wu Q, Zhao L, Ye J, Li N and Yang
H: Identification of messenger and long noncoding RNAs associated
with gallbladder cancer via gene expression profile analysis. J
Cell Biochem. 120:19377–19387. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wen L, Li Y, Jiang Z, Zhang Y, Yang B and
Han F: miR-944 inhibits cell migration and invasion by targeting
MACC1 in colorectal cancer. Oncol Rep. 37:3415–3422. 2017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Pan T, Chen W, Yuan X, Shen J, Qin C and
Wang L: miR-944 inhibits metastasis of gastric cancer by preventing
the epithelial-mesenchymal transition via MACC1/Met/AKT signaling.
FEBS Open Bio. 7:905–914. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu M, Zhou K and Cao Y: MicroRNA-944
affects cell growth by targeting EPHA7 in non-small cell lung
cancer. Int J Mol Sci. 17:E14932016. View Article : Google Scholar : PubMed/NCBI
|
38
|
He Z, Xu H, Meng Y and Kuang Y: miR-944
acts as a prognostic marker and promotes the tumor progression in
endometrial cancer. Biomed Pharmacother. 88:902–910. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Xie H, Lee L, Scicluna P, Kavak E, Larsson
C, Sandberg R and Lui WO: Novel functions and targets of miR-944 in
human cervical cancer cells. Int J Cancer. 136:E230–E241. 2015.
View Article : Google Scholar
|
40
|
He H, Tian W, Chen H and Jiang K: miR-944
functions as a novel oncogene and regulates the chemoresistance in
breast cancer. Tumour Biol. 37:1599–1607. 2016. View Article : Google Scholar
|
41
|
Xu H, Zhao H and Yu J: HOXB5 promotes
retinoblastoma cell migration and invasion via ERK1/2
pathway-mediated MMPs production. Am J Transl Res. 10:1703–1712.
2018.PubMed/NCBI
|
42
|
Lee JY, Kim JM, Jeong DS and Kim MH:
Transcriptional activation of EGFR by HOXB5 and its role in breast
cancer cell invasion. Biochem Biophys Res Commun. 503:2924–2930.
2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang B, Li N and Zhang H: Knockdown of
homeobox B5 (HOXB5) inhibits cell proliferation, migration, and
invasion in non-small cell lung cancer cells through inactivation
of the Wnt/β-catenin pathway. Oncol Res. 26:37–44. 2018. View Article : Google Scholar
|
44
|
Zhu M, Zhang C, Chen D, Chen S and Zheng
H: lncRNA MALAT1 potentiates the progression of tongue squamous
cell carcinoma through regulating miR-140-5p-PAK1 pathway. Onco
Targets Ther. 12:1365–1377. 2019. View Article : Google Scholar :
|
45
|
Zhang L, Shao L and Hu Y: Long noncoding
RNA LINC00961 inhibited cell proliferation and invasion through
regulating the Wnt/β-catenin signaling pathway in tongue squamous
cell carcinoma. J Cell Biochem. 120:12429–12435. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yuan J, Xu XJ, Lin Y, Chen QY, Sun WJ,
Tang L and Liang QX: LncRNA MALAT1 expression inhibition suppresses
tongue squamous cell carcinoma proliferation, migration and
invasion by inactivating PI3K/Akt pathway and downregulating MMP-9
expression. Eur Rev Med Pharmacol Sci. 23:198–206. 2019.PubMed/NCBI
|
47
|
Zhang S, Ma H, Zhang D, Xie S, Wang W, Li
Q, Lin Z and Wang Y: LncRNA KCNQ1OT1 regulates proliferation and
cisplatin resistance in tongue cancer via miR-211-5p mediated
Ezrin/Fak/Src signaling. Cell Death Dis. 9:7422018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zuo Z, Ma L, Gong Z, Xue L and Wang Q:
Long non-coding RNA CASC15 promotes tongue squamous carcinoma
progression through targeting miR-33a-5p. Environ Sci Pollut Res
Int. 25:22205–22212. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Abdollahzadeh R, Daraei A, Mansoori Y,
Sepahvand M, Amoli MM and Tavakkoly-Bazzaz J: Competing endogenous
RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A
new look at hallmarks of breast cancer. J Cell Physiol.
234:10080–10100. 2019. View Article : Google Scholar
|
50
|
Yang M and Wei W: SNHG16: A novel long-non
coding RNA in human cancers. Onco Targets Ther. 12:11679–11690.
2019. View Article : Google Scholar
|
51
|
Yu Y, Gao F, He Q, Li G and Ding G: lncRNA
UCA1 functions as a ceRNA to promote prostate cancer progression
via sponging miR143. Mol Ther Nucleic Acids. 19:751–758. 2019.
View Article : Google Scholar
|