1
|
Johnson DR and O'Neill BP: Glioblastoma
survival in the United States before and during the temozolomide
era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar
|
2
|
Paw I, Carpenter RC, Watabe K, Debinski W
and Lo HW: Mechanisms regulating glioma invasion. Cancer Lett.
362:1–7. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Petropoulos C, Guichet P-O, Masliantsev K,
Wager M and Karayan-Tapon L: Functional invadopodia formed in
glioblastoma stem cells are important regulators of tumor
angiogenesis. Oncotarget. 9:20640–20657. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Micallef J, Taccone M, Mukherjee J, Croul
S, Busby J, Moran MF and Guha A: Epidermal growth factor receptor
variant III-induced glioma invasion is mediated through
myristoylated alanine-rich protein kinase C substrate
overexpression. Cancer Res. 69:7548–7556. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Muller PAJ and Vousden KH: p53 mutations
in cancer. Nat Cell Biol. 15:2–8. 2013. View Article : Google Scholar
|
7
|
Kubiatowski T, Jang T, Lachyankar MB,
Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH and
Recht LD: Association of increased phosphatidylinositol 3-kinase
signaling with increased invasiveness and gelatinase activity in
malignant gliomas. J Neurosurg. 95:480–488. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Brandes AA, Franceschi E, Tosoni A, Hegi
ME and Stupp R: Epidermal growth factor receptor inhibitors in
neuro-oncology: Hopes and disappointments. Clin Cancer Res.
14:957–960. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vivanco I, Robins HI, Rohle D, Campos C,
Grommes C, Nghiemphu PL, Kubek S, Oldrini B, Chheda MG, Yannuzzi N,
et al: Differential sensitivity of glioma-versus lung
cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer
Discov. 2:458–471. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mrugala MM and Chamberlain MC: Mechanisms
of disease: Temozolomide and glioblastoma-look to the future. Nat
Clin Pract Oncol. 5:476–486. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Foukas LC, Berenjeno IM, Gray A, Khwaja A
and Vanhaesebroeck B: Activity of any class IA PI3K isoform can
sustain cell proliferation and survival. Proc Natl Acad Sci USA.
107:11381–11386. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yuan TL and Cantley LC: PI3K pathway
alterations in cancer: Variations on a theme. Oncogene.
27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Faes S and Dormond O: PI3K and AKT:
Unfaithful partners in cancer. Int J Mol Sci. 16:21138–21152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Rhodes DR, Yu J, Shanker K, Deshpande N,
Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM:
ONCOMINE: A cancer microarray database and integrated data-mining
platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bredel M, Bredel C, Juric D, Harsh GR,
Vogel H, Recht LD and Sikic BI: High-resolution genome-wide mapping
of genetic alterations in human glial brain tumors. Cancer Res.
65:4088–4096. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liang Y, Diehn M, Watson N, Bollen AW,
Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO
and Israel MA: Gene expression profiling reveals molecularly and
clinically distinct subtypes of glioblastoma multiforme. Proc Natl
Acad Sci USA. 102:5814–5819. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shai R, Shi T, Kremen TJ, Horvath S, Liau
LM, Cloughesy TF, Mischel PS and Nelson S: Gene expression
profiling identifies molecular subtypes of gliomas. Oncogene.
22:4918–4923. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee J, Kotliarova S, Kotliarov Y, Li A, Su
Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al:
Tumor stem cells derived from glioblastomas cultured in bFGF and
EGF more closely mirror the phenotype and genotype of primary
tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403.
2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sun L, Hui AM, Su Q, Vortmeyer A,
Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey
R, et al: Neuronal and glioma-derived stem cell factor induces
angiogenesis within the brain. Cancer Cell. 9:287–300. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Birmingham A, Selfors LM, Forster T,
Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long
A, Kelleher D, et al: Statistical methods for analysis of
high-throughput RNA inter-ference screens. Nat Methods. 6:569–575.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chung N, Zhang XD, Kreamer A, Locco L,
Kuan PF, Bartz S, Linsley PS, Ferrer M and Strulovici B: Median
absolute deviation to improve hit selection for genome-scale RNAi
screens. Biomol Screen. 13:149–158. 2008. View Article : Google Scholar
|
23
|
Zhang XD, Yang XC, Chung N, Gates A, Stec
E, Kunapuli P, Holder DJ, Ferrer M and Espeseth AS: Robust
statistical methods for hit selection in RNA interference
high-throughput screening experiments. Pharmacogenomics. 7:299–309.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT analysis toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou G, Soufan O, Ewald J, Hancock REW,
Basu N and Xia J: NetworkAnalyst 3.0: A visual analytics platform
for comprehensive gene expression profiling and meta-analysis.
Nucleic Acids Res. 47:234–241. 2019. View Article : Google Scholar
|
27
|
Geissmann Q: OpenCFU, a new free and
open-source software to count cell colonies and other circular
objects. PLoS One. 8:e540722013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Howard-Jones N: A CIOMS ethical code for
animal experimentation. WHO Chron. 39:51–56. 1985.PubMed/NCBI
|
29
|
Crespo I, Vital AL, Gonzalez-Tablas M,
Patino Mdel C, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao
A, Tabernero MD, et al: Molecular and genomic alterations in
glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cancer Genome Atlas Research Network:
Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen H, Huang Q, Dong J, Zhai DZ, Wang AD
and Lan Q: Overexpression of CDC2/CyclinB1 in gliomas, and CDC2
depletion inhibits proliferation of human glioma cells in vitro and
in vivo. BMC Cancer. 8:292008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Greenman C, Stephens P, Smith R, Dalgliesh
GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C,
et al: Patterns of somatic mutation in human cancer genomes.
Nature. 446:153–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Middelbeek J, Clark K, Venselaar H, Huynen
MA and van Leeuwen F: The alpha-kinase family : An exceptional
branch on the protein kinase tree. Cell Mol Life Sci. 67:875–890.
2010. View Article : Google Scholar
|
34
|
Eßbach C, Andrae N, Pachow D, Warnke JP,
Wilisch-Neumann A, Kirches E and Mawrin C: Abundance of Flt3 and
its ligand in astrocytic tumors. Onco Targets Ther. 6:555–561.
2013.
|
35
|
Kottaridis PD, Gale RE, Frew ME, Harrison
G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett
AK, et al: The presence of a FLT3 internal tandem duplication in
patients with acute myeloid leukemia (AML) adds important
prognostic information to cytogenetic risk group and response to
the first cycle of chemotherapy: Analysis of 854 patients from the
United Kingdom Medical Research Council AML 10 and 12 trials.
Blood. 98:1752–1759. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bleeker FE, Lamba S, Zanon C, Molenaar RJ,
Hulsebos TJ, Troost D, van Tilborg AA, Vandertop WP, Leenstra S,
van Noorden CJ and Bardelli A: Mutational profiling of kinases in
glioblastoma. BMC Cancer. 14:7182014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ali S, King G, Curtin J, Candolfi M, Xiong
W, Liu C, Puntel M, Cheng Q, Prieto J, Ribas A, et al: Combined
immunostimulation and conditional cytotoxic gene therapy provide
long-term survival in a large glioma model. Cancer Res.
65:7194–7204. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
King GD, Muhammad AK, Curtin JF, Barcia C,
Puntel M, Liu C, Honig SB, Candolfi M, Mondkar S, Lowenstein PR and
Castro MG: Flt3L and TK gene therapy eradicate multifocal glioma in
a syngeneic glioblastoma model. Neuro Oncol. 10:19–31. 2008.
View Article : Google Scholar
|
39
|
Roe JL, Rivin CJ, Sessions RA, Feldmann KA
and Zambryski PC: The Tousled gene in A. thaliana encodes a protein
kinase homolog that is required for leaf and flower development.
Cell. 75:939–950. 1993. View Article : Google Scholar : PubMed/NCBI
|
40
|
Roe JL, Nemhauser JL and Zambryski PC:
TOUSLED participates in apical tissue formation during gynoecium
development in Arabidopsis. Plant Cell. 9:335–353. 1997.PubMed/NCBI
|
41
|
Carrera P, Moshkin YM, Gronke S, Sillje
HHW, Nigg EA, Jackle H and Karch F: Tousled-like kinase functions
with the chromatin assembly pathway regulating nuclear divisions.
Genes Dev. 17:2578–2590. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Silljé HH, Takahashi K, Tanaka K, Van
Houwe G and Nigg EA: Mammalian homologues of the plant Tousled gene
code for cell-cycle-regulated kinases with maximal activities
linked to ongoing DNA replication. EMBO J. 18:5691–5702. 1999.
View Article : Google Scholar : PubMed/NCBI
|
43
|
De Benedetti A: The tousled-like kinases
as guardians of genome integrity. ISRN Mol Biol. 2012:6275962012.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Capra M, Nuciforo PG, Confalonieri S,
Quarto M, Bianchi M, Nebuloni M, Boldorini R, Pallotti F, Viale G,
Gishizky ML, et al: Frequent alterations in the expression of
serine/threonine kinases in human cancers. Cancer Res.
66:8147–8154. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xiang W, Zhang D, Montell DJ and Brill J:
Tousled-like kinase regulates cytokine-mediated communication
between cooperating cell types during collective border cell
migration. Mol Biol Cell. 27:12–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Segura-Bayona S, Knobel PA, González-Burón
H, Youssef SA, Peña-Blanco A, Coyaud É, López-Rovira T, Rein K,
Palenzuela L, Colombelli J, et al: Differential requirements for
Tousled-like kinases 1 and 2 in mammalian development. Cell Death
Differ. 24:1872–1885. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li Z, Gourguechon S and Wang CC:
Tousled-like kinase in a microbial eukaryote regulates spindle
assembly and S-phase progression by interacting with Aurora kinase
and chromatin assembly factors. J Cell Sci. 120:3883–3894. 2007.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Li Z, Umeyama T and Wang CC: The
chromosomal passenger complex and a mitotic kinesin interact with
the tousled-like kinase in trypanosomes to regulate mitosis and
cytokines. PLoS One. 3:e38142008. View Article : Google Scholar
|
49
|
Zhao T, Sun Q, del Rincon SV, Lovato A,
Marques M and Witcher M: Gallotannin imposes S phase arrest in
breast cancer cells and suppresses the growth of triple-negative
tumors in vivo. PLoS One. 9:e928532014. View Article : Google Scholar : PubMed/NCBI
|
50
|
DiPaola RS: To arrest or not to
G2-M cell-cycle arrest. Clin Cancer Res. 8:3311–3314.
2002.PubMed/NCBI
|
51
|
Wang Y, Zhu S, Cloughesy TF, Liau LM and
Mischel PS: p53 disruption profoundly alters the response of human
glioblastoma cells to DNA topoisomerase I inhibition. Oncogene.
23:1283–1290. 2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ronald S, Sunavala-Dossabhoy G, Adams L,
Williams B and De Benedetti A: The expression of tousled kinases in
CaP cell lines and its relation to radiation response and DSB
repair. Prostate. 71:1367–1373. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang Y, Cai R, Zhou R, Li Y and Liu L:
Tousled-like kinase mediated a new type of cell death pathway in
Drosophila. Cell Death Differ. 23:146–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Minami Y, Endo S, Okumura S, Shibukawa K,
Sasaki T and Ohsaki Y: Activating the prostaglandin
I2-IP signaling suppresses metastasis in lung cancer.
Cancer Res. 72:2012.
|
55
|
Heinonen H, Nieminen A, Saarela M,
Kallioniemi A, Klefström J, Hautaniemi S and Monni O: Deciphering
downstream gene targets of PI3K/mTOR/p70S6K pathway in breast
cancer. BMC Genomics. 9:3482008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Pelloski CE, Lin E, Zhang L, Yung WK,
Colman H, Liu JL, Woo SY, Heimberger AB, Suki D, Prados M, et al:
Prognostic associations of activated mitogen-activated protein
kinase and Akt pathways in glioblastoma. Clin Cancer Res.
12:3935–3942. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Harada H, Andersen JS, Mann M, Terada N
and Korsmeyer SJ: p70S6 kinase signals cell survival as well as
growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad
Sci USA. 98:9666–9670. 2001. View Article : Google Scholar : PubMed/NCBI
|
58
|
Volarević S and Thomas G: Role of S6
phosphorylation and S6 kinase in cell growth. Prog Nucleic Acid Res
Mol Biol. 65:101–127. 2001. View Article : Google Scholar
|
59
|
Tu S and Cerione RA: Cdc42 is a substrate
for caspases and influences Fas-induced apoptosis. J Biol Chem.
276:19656–19663. 2001. View Article : Google Scholar : PubMed/NCBI
|
60
|
Warner SJ, Yashiro H and Longmore GD: The
Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced
compensatory proliferation in epithelia. Curr Biol. 20:677–686.
2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Zhang X, Zhang W, Cao WD, Cheng G and
Zhang YQ: Glioblastoma multiforme : Molecular characterization and
current treatment strategy (Review). Exp Ther Med. 3:9–14. 2012.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Zhang J, Stevens MFG and Bradshaw TD:
Temozolomide: Mechanisms of action, repair and resistance. Curr Mol
Pharmacol. 5:102–114. 2012. View Article : Google Scholar
|
63
|
Pokorny JL, Calligaris D, Gupta SK,
Iyekegbe DO Jr, Mueller D, Bakken KK, Carlson BL, Schroeder MA,
Evans DL, Lou Z, et al: The efficacy of the Wee1 inhibitor MK-1775
combined with temozolomide is limited by heterogeneous distribution
across the blood-brain barrier in glioblastoma. Clin Cancer Res.
21:1916–1924. 2015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Tivnan A, Zakaria Z, O'Leary C, Kögel D,
Pokorny JL, Sarkaria JN and Prehn JH: Inhibition of multidrug
resistance protein 1 (MRP1) improves chemotherapy drug response in
primary and recurrent glioblastoma multiforme. Front Neurosci.
9:2182015. View Article : Google Scholar : PubMed/NCBI
|
65
|
Groth A, Lukas J, Nigg EA, Silljé HH,
Wernstedt C, Bartek J and Hansen K: Human Tousled like kinases are
targeted by an ATM- and Chk1-dependent DNA damage checkpoint. EMBO
J. 22:1676–1687. 2003. View Article : Google Scholar : PubMed/NCBI
|
66
|
Krause DR, Jonnalagadda JC, Gatei MH,
Sillje HH, Zhou BB, Nigg EA and Khanna K: Suppression of
Tousled-like kinase activity after DNA damage or replication block
requires ATM, NBS1 and Chk1. Oncogene. 22:5927–5937. 2003.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Takayama Y, Kokuryo T, Yokoyama Y, Ito S,
Nagino M, Hamaguchi M and Senga T: Silencing of Tousled-like kinase
1 sensitizes cholangiocarcinoma cells to cisplatin-induced
apoptosis. Cancer Lett. 296:27–34. 2010. View Article : Google Scholar : PubMed/NCBI
|
68
|
Cui B, Johnson SP, Bullock N, Ali-Osman F,
Bigner DD and Friedman HS: Decoupling of DNA damage response
signaling from DNA damages underlies temozolomide resistance in
glioblastoma cells. J Biomed Res. 24:424–435. 2010. View Article : Google Scholar : PubMed/NCBI
|
69
|
Hermisson M, Klumpp A, Wick W, Wischhusen
J, Nagel G, Roos W, Kaina B and Weller M: O6-methylguanine DNA
methyltransferase and p53 status predict temozolomide sensitivity
in human malignant glioma cells. J Neurochem. 96:766–776. 2006.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Martin S, Janouskova H and Dontenwill M:
Integrins and p53 pathways in glioblastoma resistance to
temozolomide. Front Oncol. 2:1572012. View Article : Google Scholar : PubMed/NCBI
|
71
|
Roos WP, Batista LF, Naumann SC, Wick W,
Weller M, Menck CFM and Kaina B: Apoptosis in malignant glioma
cells triggered by the temozolomide-induced DNA lesion
O6-methylguanine. Oncogene. 26:186–197. 2007. View Article : Google Scholar
|
72
|
Blough MD, Beauchamp DC, Westgate MR,
Kelly JJ and Cairncross JG: Effect of aberrant p53 function on
temozolomide sensitivity of glioma cell lines and brain tumor
initiating cells from glioblastoma. J Neurooncol. 102:1–7. 2011.
View Article : Google Scholar
|
73
|
Ronald S, Awate S, Rath A, Carroll J,
Galiano F, Dwyer D, Kleiner-Hancock H, Mathis JM, Vigod S and De
Benedetti A: Phenothiazine inhibitors of TLKs affect double-strand
break repair and DNA damage response recovery and potentiate tumor
killing with radiomimetic therapy. Genes Cancer. 4:39–53. 2013.
View Article : Google Scholar : PubMed/NCBI
|