1
|
Basu A, Bhattacharjee A, Samanta A and
Bhattacharya S: An oxovanadium(IV) complex protects murine bone
marrow cells against cisplatin-induced myelotoxicity and DNA
damage. Drug Chem Toxicol. 40:359–367. 2017. View Article : Google Scholar
|
2
|
Vera O, Jimenez J, Pernia O,
Rodriguez-Antolin C, Rodriguez C, Sanchez Cabo F, Soto J, Rosas R,
Lopez-Magallon S, Esteban Rodriguez I, et al: DNA methylation of
miR-7 is a mechanism involved in platinum response through MAFG
overexpression in cancer cells. Theranostics. 7:4118–4134. 2017.
View Article : Google Scholar :
|
3
|
van As JW, van den Berg H and van Dalen
EC: Different infusion durations for preventing platinum-induced
hearing loss in children with cancer. Cochrane Database Syst Rev.
7:CD0108852018.PubMed/NCBI
|
4
|
Klumpers MJ, Coenen MJ, Gidding CE and Te
Loo DM: The role of germline variants in chemotherapy outcome in
brain tumors: A systematic review of pharmacogenetic studies.
Pharmacogenomics. 18:501–513. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pang J, Xiong H, Zhan T, Cheng G, Jia H,
Ye Y, Su Z, Chen H, Lin H, Lai L, et al: Sirtuin 1 and autophagy
attenuate cisplatin-induced hair cell death in the mouse cochlea
and zebrafish lateral line. Front Cell Neurosci. 12:5152019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ryu NG, Moon IJ, Chang YS, Kim BK, Chung
WH, Cho YS and Hong SH: Cochlear implantation for profound hearing
loss after multimodal treatment for neuroblastoma in children. Clin
Exp Otorhinolaryngol. 8:329–334. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Youm I, West MB, Li W, Du X, Ewert DL and
Kopke RD: siRNA-loaded biodegradable nanocarriers for therapeutic
MAPK1 silencing against cisplatin-induced ototoxicity. Int J Pharm.
528:611–623. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo X, Bai X, Li L, Li J and Wang H:
Forskolin protects against cisplatin-induced ototoxicity by
inhibiting apoptosis and ROS production. Biomed Pharmacother.
99:530–536. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Martín-Saldaña S, Palao-Suay R, Aguilar
MR, Ramírez-Camacho R and San Román J: Polymeric nanoparticles
loaded with dexamethasone or α-tocopheryl succinate to prevent
cisplatin-induced ototoxicity. Acta Biomater. 53:199–210. 2017.
View Article : Google Scholar
|
10
|
Mukherjea D, Jajoo S, Sheehan K, Kaur T,
Sheth S, Bunch J, Perro C, Rybak LP and Ramkumar V: NOX3 NADPH
oxidase couples transient receptor potential vanilloid 1 to signal
transducer and activator of transcription 1-mediated inflammation
and hearing loss. Antioxid Redox Signal. 14:999–1010. 2011.
View Article : Google Scholar :
|
11
|
Kim SJ, Park C, Lee JN and Park R:
Protective roles of fenofibrate against cisplatin-induced
ototoxicity by the rescue of peroxisomal and mitochondrial
dysfunction. Toxicol Appl Pharmacol. 353:43–54. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fetoni AR, Eramo SL, Paciello F, Rolesi R,
Podda MV, Troiani D and Paludetti G: Curcuma longa (curcumin)
decreases in vivo cisplatin-induced ototoxicity through heme
oxygenase-1 induction. Otol Neurotol. 35:e169–e177. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Harris MS, Gilbert JL, Lormore KA,
Musunuru SA and Fritsch MH: Cisplatin ototoxicity affecting
cochlear implant benefit. Otol Neurotol. 32:969–972. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ceriani F, Hendry A, Jeng JY, Johnson SL,
Stephani F, Olt J, Holley MC, Mammano F, Engel J, Kros CJ, et al:
Coordinated calcium signalling in cochlear sensory and non-sensory
cells refines afferent innervation of outer hair cells. EMBO J.
38:e998392019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hegedűs L, Zámbó B, Pászty K, Padányi R,
Varga K, Penniston JT and Enyedi Á: Molecular diversity of plasma
membrane Ca2+ transporting ATPases: Their function under
normal and pathological conditions. Adv Exp Med Biol.
1131:2020.
|
16
|
Wang X, Zhu Y, Long H, Pan S, Xiong H,
Fang Q, Hill K, Lai R, Yuan H and Sha SH: Mitochondrial calcium
transporters mediate sensitivity to noise-induced losses of hair
cells and cochlear synapses. Front Mol Neurosci. 11:4692018.
View Article : Google Scholar
|
17
|
Brito R, Sheth S, Mukherjea D, Rybak LP
and Ramkumar V: TRPV1: A potential drug target for treating various
diseases. Cells. 3:517–545. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Samanta A, Hughes TET and Moiseenkova-Bell
VY: Transient receptor potential (TRP) channels. Subcell Biochem.
87:141–165. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bai P, Liu Y, Xue S, Hamri GC, Saxena P,
Ye H, Xie M and Fussenegger M: A fully human transgene switch to
regulate therapeutic protein production by cooling sensation. Nat
Med. 25:1266–1273. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Övey IS and Naziroğlu M: Homocysteine and
cytosolic GSH depletion induce apoptosis and oxidative toxicity
through cytosolic calcium overload in the hippocampus of aged mice:
Involvement of TRPM2 and TRPV1 channels. Neuroscience. 284:225–233.
2015. View Article : Google Scholar
|
21
|
Kaneko Y and Szallasi A: Transient
receptor potential (TRP) channels: A clinical perspective. Br J
Pharmacol. 171:2474–2507. 2014. View Article : Google Scholar :
|
22
|
Lima B, Sánchez M, Luna L, Agüero MB,
Zacchino S, Filippa E, Palermo JA, Tapia A and Feresin GE:
Antimicrobial and anti-oxidant activities of Gentianella
multicaulis collected on the Andean Slopes of San Juan Province,
Argentina. Z Naturforsch C J Biosci. 67:29–38. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kaur T, Borse V, Sheth S, Sheehan K, Ghosh
S, Tupal S, Jajoo S, Mukherjea D, Rybak LP and Ramkumar V:
Adenosine A1 receptor protects against cisplatin ototoxicity by
suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J
Neurosci. 36:3962–3977. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Marwaha L, Bansal Y, Singh R, Saroj P,
Bhandari R and Kuhad A: TRP channels: Potential drug target for
neuropathic pain. Inflammopharmacology. 24:305–317. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Jabeen M, Ahmad S, Shahid K, Sadiq A and
Rashid U: Ursolic acid hydrazide based organometallic complexes:
Synthesis, characterization, antibacterial, antioxidant, and
docking studies. Front Chem. 6:3432018. View Article : Google Scholar
|
26
|
Iqbal J, Abbasi BA, Ahmad R, Mahmood T,
Kanwal S, Ali B, Khalil AT, Shah SA, Alam MM and Badshah H: Ursolic
acid a promising candidate in the therapeutics of breast cancer:
Current status and future implications. Biomed Pharmacother.
108:752–756. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Silva FS, Oliveira PJ and Duarte MF:
Oleanolic, ursolic, and betulinic acids as food supplements or
pharmaceutical agents for type 2 diabetes: Promise or illusion? J
Agric Food Chem. 64:2991–3008. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wan SZ, Liu C, Huang CK, Luo FY and Zhu X:
Ursolic acid improves intestinal damage and bacterial dysbiosis in
liver fibrosis mice. Front Pharmacol. 10:13212019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim GH, Kan SY, Kang H, Lee S, Ko HM, Kim
JH and Lim JH: Ursolic acid suppresses cholesterol biosynthesis and
exerts anti-cancer effects in hepatocellular carcinoma cells. Int J
Mol Sci. 20:47672019. View Article : Google Scholar :
|
30
|
Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS
and Jun M: p-Coumaric acid and ursolic acid from Corni fructus
attenuated β-amyloid (25-35)-induced toxicity through regulation of
the NF-κB signaling pathway in PC12 cells. J Agric Food Chem.
62:4911–4916. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hong SY, Jeong WS and Jun M: Protective
effects of the key compounds isolated from corni fructus against
β-amyloid- induced neurotoxicity in PC12 cells. Molecules.
17:10831–10845. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Misra RC, Sharma S, Sandeep, Garg A,
Chanotiya CS and Ghosh S: Two CYP716A subfamily cytochrome P450
mono-oxygenases of sweet basil play similar but nonredundant roles
in ursane- and oleanane-type pentacyclic triterpene biosynthesis.
New Phytol. 214:706–720. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
DeBacker JR, Harrison RT and Bielefeld EC:
Cisplatin-induced threshold shift in the CBA/CaJ, C57BL/6J, BALB/cJ
mouse models of hearing loss. Hear Res. 387:1078782020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu S, Xu T, Wu X, Lin Y, Bao D, Di Y, Ma
T, Dang Y, Jia P, Xian J, et al: Pomegranate peel extract
attenuates D-galactose-induced oxidative stress and hearing loss by
regu-lating PNUTS/PP1 activity in the mouse cochlea. Neurobiol
Aging. 59:30–40. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Matt T, Ng CL, Lang K, Sha SH, Akbergenov
R, Shcherbakov D, Meyer M, Duscha S, Xie J, Dubbaka SR, et al:
Dissociation of antibacterial activity and aminoglycoside
ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin.
Proc Natl Acad Sci USA. 109:10984–10989. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Spinelli KJ and Gillespie PG: Monitoring
intracellular calcium ion dynamics in hair cell populations with
Fluo-4 AM. PLoS One. 7:e5.18742012. View Article : Google Scholar
|
37
|
Woźniak Ł, Skąpska S and Marszałek K:
Ursolic acid-a penta-cyclic triterpenoid with a wide spectrum of
pharmacological activities. Molecules. 20:20614–20641. 2015.
View Article : Google Scholar
|
38
|
Jinhua W: Ursolic acid: Pharmacokinetics
process in vitro and in vivo, a mini review. Arch Pharm (Weinheim).
352:e18002222019. View Article : Google Scholar
|
39
|
Xu HL, Wang XT, Cheng Y, Zhao JG, Zhou YJ,
Yang JJ and Qi MY: Ursolic acid improves diabetic nephropathy via
suppression of oxidative stress and inflammation in
streptozotocin-induced rats. Biomed Pharmacother. 105:915–921.
2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yu HH, Hur JM, Seo SJ, Moon HD, Kim HJ,
Park RK and You YO: Protective effect of ursolic acid from Cornus
officinalis on the hydrogen peroxide-induced damage of HEI-OC1
auditory cells. Am J Chin Med. 37:735–746. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bao D, Zhao W, Dai C, Wan H and Cao Y: H89
dihydrochloride hydrate and calphostin C lower the body temperature
through TRPV1. Mol Med Rep. 17:1599–1608. 2018.
|
42
|
Huang KF, Ma KH, Chang YJ, Lo LC, Jhap TY,
Su YH, Liu PS and Chueh SH: Baicalein inhibits matrix
metalloproteinase 1 expression via activation of TRPV1-Ca-ERK
pathway in ultra-violet B-irradiated human dermal fibroblasts. Exp
Dermatol. 28:568–575. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Berekméri E, Deák O, Téglás T, Sághy É,
Horváth T, Aller M, Fekete Á, Köles L and Zelles T: Targeted
single-cell electroporation loading of Ca indicators in the mature
hemicochlea preparation. Hear Res. 371:75–86. 2019. View Article : Google Scholar
|
44
|
Chang L and Wang A: Calpain mediated
cisplatin-induced ototoxicity in mice. Neural Regen Res.
8:1995–2002. 2013.PubMed/NCBI
|
45
|
Yu L, Tang H, Jiang XH, Tsang LL, Chung YW
and Chan HC: Involvement of calpain-I and microRNA34 in kanamycin-
induced apoptosis of inner ear cells. Cell Biol Int. 34:1219–1225.
2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bhatta P, Dhukhwa A, Sheehan K, Al Aameri
RFH, Borse V, Ghosh S, Sheth S, Mamillapalli C, Rybak L, Ramkumar V
and Mukherjea D: Capsaicin protects against cisplatin ototoxicity
by changing the STAT3/STAT1 ratio and activating cannabinoid (CB2)
receptors in the cochlea. Sci Rep. 9:41312019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mukherjea D, Jajoo S, Whitworth C, Bunch
JR, Turner JG, Rybak LP and Ramkumar V: Short interfering RNA
against transient receptor potential vanilloid 1 attenuates
cisplatin-induced hearing loss in the rat. J Neurosci.
28:13056–13065. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Rybak LP, Mukherjea D, Jajoo S, Kaur T and
Ramkumar V: siRNA-mediated knock-down of NOX3: Therapy for hearing
loss? Cell Mol Life Sci. 69:2429–2434. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sheth S, Mukherjea D, Rybak LP and
Ramkumar V: Mechanisms of cisplatin-induced ototoxicity and
otoprotection. Front Cell Neurosci. 11:3382017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang Y, Sreekrishna K, Lin Y, Huang L,
Eickhoff D, Degenhardt C and Xu T: Modulation of transient receptor
potential (TRP) channels by chinese herbal extracts. Phytother Res.
25:1666–1670. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang S, Wang S, Asgar J, Joseph J, Ro JY,
Wei F, Campbell JN and Chung MK: Ca2+ and calpain
mediate capsaicin-induced ablation of axonal terminals expressing
transient receptor poten-tial vanilloid 1. J Biol Chem.
292:8291–8303. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
González-García JA, Nevado J,
García-Berrocal JR, Sánchez-Rodríguez C, Trinidad A, Sanz R and
Ramírez-Camacho R: Endogenous protection against oxidative stress
caused by cisplatin: Role of superoxide dismutase. Acta
Otolaryngol. 130:453–457. 2010. View Article : Google Scholar
|
53
|
Peng X, Yang Y, Tang L, Wan J, Dai J, Li
L, Huang J, Shen Y, Lin L, Gong X and Zhang L: Therapeutic benefits
of apocynin in mice with lipopolysaccharide/D-galactosamine-induced
acute liver injury via suppression of the late stage pro-apoptotic
AMPK/JNK pathway. Biomed Pharmacother. 125:1100202020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhang Y, Xu K, Kerwin T, LaManna JC and
Puchowicz M: Impact of aging on metabolic changes in the Ketotic
rat brain: Glucose, oxidative and 4-HNE metabolism. Adv Exp Med
Biol. 1072:21–25. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang L, He T, Wan B, Wang X and Zhang L:
Orexin A ameliorates HBV X protein-induced cytotoxicity and
inflam-matory response in human hepatocytes. Artif Cells Nanomed
Biotechnol. 47:2003–2009. 2019. View Article : Google Scholar : PubMed/NCBI
|
56
|
Hsu CL, Hong BH, Yu YS and Yen GC:
Antioxidant and anti-inflammatory effects of Orthosiphon aristatus
and its bioactive compounds. J Agric Food Chem. 58:2150–2156. 2010.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Yang EJ, Moon JY, Lee JS, Koh J, Lee NH
and Hyun CG: Acanthopanax koreanum fruit waste inhibits
lipopolysaccha-ride-induced production of nitric oxide and
prostaglandin E2 in RAW 264.7 macrophages. J Biomed Biotechnol.
2010:7157392010. View Article : Google Scholar
|
58
|
Mu H, Liu H, Zhang J, Huang J, Zhu C, Lu
Y, Shi Y and Wang Y: Ursolic acid prevents doxorubicin-induced
cardiac toxicity in mice through eNOS activation and inhibition of
eNOS uncoupling. J Cell Mol Med. 23:2174–2183. 2019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Zhang C, Wang C, Li W, Wu R, Guo Y, Cheng
D, Yang Y, Androulakis IP and Kong AN: Pharmacokinetics and
pharmacodynamics of the triterpenoid ursolic acid in regulating the
antioxidant, anti-inflammatory, and epigenetic gene responses in
rat leukocytes. Mol Pharm. 14:3709–3717. 2017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Yu SS, Chen B, Huang CK, Zhou JJ, Huang X,
Wang AJ, Li BM, He WH and Zhu X: Ursolic acid suppresses
TGF-β1-induced quiescent HSC activation and transformation by
inhibiting NADPH oxidase expression and Hedgehog signaling. Exp
Ther Med. 14:3577–3582. 2017. View Article : Google Scholar : PubMed/NCBI
|
61
|
Antônio E: Poly(lactic acid) nanoparticles
loaded with ursolic acid: Characterization and in vitro evaluation
of radical scavenging activity and cytotoxicity. Mater Sci Eng C
Mater Biol Appl. 71:156–166. 2017. View Article : Google Scholar
|
62
|
Fetoni AR, Sergi B, Ferraresi A, Paludetti
G and Troiani D: Protective effects of alpha-tocopherol and
tiopronin against cisplatin-induced ototoxicity. Acta Otolaryngol.
124:421–426. 2004. View Article : Google Scholar : PubMed/NCBI
|
63
|
Chirtes F and Albu S: Prevention and
restoration of hearing loss associated with the use of cisplatin.
Biomed Res Int. 2014:9254852014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Luo J, Hu YL and Wang H: Ursolic acid
inhibits breast cancer growth by inhibiting proliferation, inducing
autophagy and apoptosis, and suppressing inflammatory responses via
the PI3K/AKT and NF-κB signaling pathways in vitro. Exp Ther Med.
14:3623–3631. 2017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Chang HY, Chen CJ, Ma WC, Cheng WK, Lin
YN, Lee YR, Chen JJ and Lim YP: Modulation of pregnane X receptor
(PXR) and constitutive androstane receptor (CAR) activation by
ursolic acid (UA) attenuates rifampin-isoniazid cytotoxicity.
Phytomedicine. 36:37–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
66
|
Kim SH, Jin H, Meng RY, Kim DY, Liu YC,
Chai OH, Park BH and Kim SM: Activating hippo pathway via Rassf1 by
ursolic acid suppresses the tumorigenesis of gastric cancer. Int J
Mol Sci. 20:47092019. View Article : Google Scholar :
|
67
|
Wang WJ, Sui H, Qi C, Li Q, Zhang J, Wu
SF, Mei MZ, Lu YY, Wan YT, Chang H and Guo PT: Ursolic acid
inhibits proliferation and reverses drug resistance of ovarian
cancer stem cells by downregulating ABCG2 through suppressing the
expression of hypoxia-inducible factor-1α in vitro. Oncol Rep.
36:428–440. 2016. View Article : Google Scholar : PubMed/NCBI
|
68
|
Zhou M, Yi Y, Liu L, Lin Y, Li J, Ruan J
and Zhong Z: Polymeric micelles loading with ursolic acid enhancing
anti-tumor effect on hepatocellular carcinoma. J Cancer.
10:5820–5831. 2019. View Article : Google Scholar : PubMed/NCBI
|