1
|
Tawde SA, Chablani L, Akalkotkar A and
D'Souza MJ: Evaluation of microparticulate ovarian cancer vaccine
via transdermal route of delivery. J Control Release. 235:147–154.
2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zahedi P, De Souza R, Huynh L,
Piquette-Miller M and Allen C: Combination drug delivery strategy
for the treatment of multi-drug resistant ovarian cancer. Mol
Pharm. 8:260–269. 2011. View Article : Google Scholar
|
3
|
Lohse I, Azzam DJ, Al-Ali H, Volmar CH,
Brothers SP, Ince TA and Wahlestedt C: Ovarian cancer treatment
stratification using ex vivo drug sensitivity testing. Anticancer
Res. 39:4023–4030. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Secord AA: Ovarian cancer: Time to move
beyond one size fits all. Lancet Oncol. 20:754–755. 2019.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Borley J and Brown R: Epigenetic
mechanisms and therapeutic targets of chemotherapy resistance in
epithelial ovarian cancer. Ann Med. 47:359–369. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ridge SM, Sullivan FJ and Glynn SA:
Mesenchymal stem cells: Key players in cancer progression. Mol
Cancer. 16:312017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li P, Gong Z, Shultz LD and Ren G:
Mesenchymal stem cells: From regeneration to cancer. Pharmacol
Ther. 200:42–54. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ding DC, Shyu WC, Lin SZ, Liu HW, Chiou SH
and Chu TY: Human umbilical cord mesenchymal stem cells support
nontu-morigenic expansion of human embryonic stem cells. Cell
Transplant. 21:1515–1527. 2012. View Article : Google Scholar
|
9
|
Houthuijzen JM, Daenen LG, Roodhart JM and
Voest EE: The role of mesenchymal stem cells in anti-cancer drug
resistance and tumour progression. Br J Cancer. 106:1901–1906.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sundararajan V, Sarkar FH and Ramasamy TS:
Correction to: The versatile role of exosomes in cancer
progression: Diagnostic and therapeutic implications. Cell Oncol
(Dordr). 41:4632018. View Article : Google Scholar
|
11
|
Halkein J, Tabruyn SP, Ricke-Hoch M,
Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert
V, Thiry M, et al: MicroRNA-146a is a therapeutic target and
biomarker for peri-partum cardiomyopathy. J Clin Invest.
123:2143–2154. 2013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Roos J, Enlund E, Funcke JB, Tews D,
Holzmann K, Debatin KM, Wabitsch M and Fischer-Posovszky P:
miR-146a-mediated suppression of the inflammatory response in human
adipocytes. Sci Rep. 6:383392016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang C, Lim W, Park J, Park S, You S and
Song G: Anti-inflammatory effects of mesenchymal stem cell-derived
exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast
cells. Mol Hum Reprod. 25:755–771. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cheng WC, Liao TT, Lin CC, Yuan LE, Lan
HY, Lin HH, Teng HW, Chang HC, Lin CH, Yang CY, et al:
RAB27B-activated secretion of stem-like tumor exosomes delivers the
biomarker microRNA-146a-5p which promotes tumorigenesis and
associates with an immunosuppressive tumor microenvironment in
colorectal cancer. Int J Cancer. 145:2209–2224. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang D, Guo H, Feng W and Qiu H: LAMC2
regulated by microRNA-125a-5p accelerates the progression of
ovarian cancer via activating p38 MAPK signalling. Life Sci.
232:1166482019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu Z, Cai M, Zhang Y, Tao L and Guo R:
miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian
cancer by regulating FOXP1/ATG14 pathway. Cell Cycle. 19:193–206.
2020. View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
18
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop DJ and Horwitz E: Minimal criteria for defining multipotent
mesen-chymal stromal cells. The international society for cellular
therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar
|
19
|
Thery C, Witwer KW, Aikawa E, Alcaraz MJ,
Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F,
Atkin-Smith GK, et al: Minimal information for studies of
extracellular vesicles 2018 (MISEV2018): A position statement of
the international society for extracellular vesicles and update of
the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018.
View Article : Google Scholar
|
20
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J
and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and
function. Genomics Proteomics Bioinformatics. 13:17–24. 2015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lai RC, Yeo RW, Tan KH and Lim SK:
Exosomes for drug delivery-a novel application for the mesenchymal
stem cell. Biotechnol Adv. 31:543–551. 2013. View Article : Google Scholar
|
22
|
Asare-Werehene M, Nakka K, Reunov A, Chiu
CT, Lee WT, Abedini MR, Wang PW, Shieh DB, Dilworth FJ, Carmona E,
et al: The exosome-mediated autocrine and paracrine actions of
plasma gelsolin in ovarian cancer chemoresistance. Oncogene.
39:1600–1616. 2020. View Article : Google Scholar :
|
23
|
Guo H, Ha C, Dong H, Yang Z, Ma Y and Ding
Y: Cancer-associated fibroblast-derived exosomal microRNA-98-5p
promotes cisplatin resistance in ovarian cancer by targeting
CDKN1A. Cancer Cell Int. 19:3472019. View Article : Google Scholar :
|
24
|
Hu W, Xu B, Zhang J, Kou C, Liu J, Wang Q
and Zhang R: Exosomal miR-146a-5p from treponema
pallidum-stimulated macrophages reduces endothelial cells
permeability and mono-cyte transendothelial migration by targeting
JAM-C. Exp Cell Res. 388:1118232020. View Article : Google Scholar
|
25
|
McCann JV, Liu A, Musante L, Erdbrugger U,
Lannigan J and Dudley AC: A miRNA signature in endothelial
cell-derived extracellular vesicles in tumor-bearing mice. Sci Rep.
9:167432019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cui Y, She K, Tian D, Zhang P and Xin X:
miR-146a inhibits proliferation and enhances chemosensitivity in
epithelial ovarian cancer via reduction of SOD2. Oncol Res.
23:275–282. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ding Y, Cao F, Sun H, Wang Y, Liu S, Wu Y,
Cui Q, Mei W and Li F: Exosomes derived from human umbilical cord
mesen-chymal stromal cells deliver exogenous miR-145-5p to inhibit
pancreatic ductal adenocarcinoma progression. Cancer Lett.
442:351–361. 2019. View Article : Google Scholar
|
28
|
Yuan L, Liu Y, Qu Y, Liu L and Li H:
Exosomes derived from MicroRNA-148b-3p-overexpressing human
umbilical cord mesenchymal stem cells restrain breast cancer
progression. Front Oncol. 9:10762019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kamada M, Koshikawa N, Minegishi T, Kawada
C, Karashima T, Shuin T and Seiki M: Urinary laminin-g2 is a novel
biomarker of non-muscle invasive urothelial carcinoma. Cancer Sci.
106:1730–1737. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Korbakis D, Dimitromanolakis A, Prassas I,
Davis GJ, Barber E, Reckamp KL, Blasutig I and Diamandis EP: Serum
LAMC2 enhances the prognostic value of a multi-parametric panel in
non-small cell lung cancer. Br J Cancer. 113:484–491. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kosanam H, Prassas I, Chrystoja CC, Soleas
I, Chan A, Dimitromanolakis A, Blasutig IM, Ruckert F, Gruetzmann
R, Pilarsky C, et al: Laminin, gamma 2 (LAMC2): A promising new
putative pancreatic cancer biomarker identified by proteomic
analysis of pancreatic adenocarcinoma tissues. Mol Cell Proteomics.
12:2820–2832. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Govaere O, Wouters J, Petz M, Vandewynckel
YP, Van den Eynde K, Van den Broeck A, Verhulst S, Dolle L,
Gremeaux L, Ceulemans A, et al: Laminin-332 sustains
chemo-resistance and quiescence as part of the human hepatic cancer
stem cell niche. J Hepatol. 64:609–617. 2016. View Article : Google Scholar
|
33
|
Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang
K, Guan X, Yang K and Bai Y: LncRNA CASC9 promotes esophageal
squamous cell carcinoma metastasis through upregulating LAMC2
expression by interacting with the CREB-binding protein. Cell Death
Differ. 25:1980–1995. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Binju M, Amaya-Padilla MA, Wan G,
Gunosewoyo H, Suryo Rahmanto Y and Yu Y: Therapeutic inducers of
apoptosis in ovarian cancer. Cancers (Basel). 11. pp. 17862019,
View Article : Google Scholar
|
35
|
Zhang W, Zhou Q, Wei Y, Da M, Zhang C,
Zhong J, Liu J and Shen J: The exosome-mediated PI3k/Akt/mTOR
signaling pathway in cervical cancer. Int J Clin Exp Pathol.
12:2474–2484. 2019.
|
36
|
Li H, Xie S, Li H, Zhang R and Zhang H:
LncRNA MALAT1 mediates proliferation of LPS treated-articular
chondrocytes by targeting the miR-146a-PI3K/Akt/mTOR axis. Life
Sci. Aug 28, 2019 (Epub ahead of print).
|