1
|
Neri M, Riezzo I, Pascale N, Pomara C and
Turillazzi E: Ischemia/reperfusion injury following acute
myocardial infarction: A critical issue for clinicians and forensic
pathologists. Mediators Inflamm. 2017:70183932017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu
W, Bennett MVL and Chen J: Oxidative stress and DNA damage after
cerebral ischemia: Potential therapeutic targets to repair the
genome and improve stroke recovery. Neuropharmacology. 134:208–217.
2018. View Article : Google Scholar
|
3
|
Cheng YC, Sheen JM, Hu WL and Hung YC:
Polyphenols and oxidative stress in atherosclerosis-related
ischemic heart disease and stroke. Oxid Med Cell Longev.
2017:85264382017. View Article : Google Scholar
|
4
|
Li YQ, Zhan ZL and Li QF: Exploration of
protective effect of Sevoflurane preconditioning on hypoxia
reoxygenation injury of myocardial cells in rats and related
molecular mechanisms. J Hainan Med Univ. 22:8–11. 2016.
|
5
|
Wen T, Wang L, Sun XJ, Zhao X, Zhang GW
and Ling LJ: Sevoflurane preconditioning promotes activation of
resident CSCs by transplanted BMSCs via miR-210 in a rat model for
myocardial infarction. Oncotarget. 8:114637–114647. 2017.
View Article : Google Scholar
|
6
|
Pagel PS and Crystal GJ: The discovery of
myocardial preconditioning using volatile anesthetics: A history
and contemporary clinical perspective. J Cardiothorac Vasc Anesth.
32:1112–1134. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xie D, Zhao J, Guo R, Jiao L, Zhang Y, Lau
WB, Lopez B, Christopher T, Gao E, Cao J, et al: Sevoflurane
pre-conditioning ameliorates diabetic myocardial
ischemia/reperfusion injury via differential regulation of p38 and
ERK. Sci Rep. 10:232020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kunst G and Klein AA: Peri-operative
anaesthetic myocardial preconditioning and protection - cellular
mechanisms and clinical relevance in cardiac anaesthesia.
Anaesthesia. 70:467–482. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ and
Han XL: MicroRNA-374 exerts protective effects by inhibiting SP1
through activating the PI3K/Akt pathway in rat models of myocardial
ischemia-reperfusion after sevoflurane preconditioning. Cell
Physiol Biochem. 46:1455–1470. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Y, Huang J, Yang X, Sun X, Xu Q,
Wang B, Zhong P and Wei X: Altered Expression of TXNIP in the
peripheral leukocytes of patients with coronary atherosclerotic
heart disease. Medicine (Baltimore). 96:e91082017. View Article : Google Scholar
|
11
|
Wang CY, Xu Y, Wang X, Guo C, Wang T and
Wang ZY: Dl-3-n-butylphthalide inhibits NLRP3 inflammasome and
mitigates alzheimer's-Like pathology via Nrf2-TXNIP-TrX axis.
Antioxid Redox Signal. 30:1411–1431. 2019. View Article : Google Scholar
|
12
|
Friedemann T, Schumacher U, Tao Y, Leung
AK and Schröder S: Neuroprotective activity of coptisine from
coptis chinensis (Franch). Evid Based Complement Alternat Med.
2015:8273082015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C,
Bao L, Zan K, Zhang Z, Yang X, et al: ROS/TXNIP pathway contributes
to thrombin induced NLRP3 inflammasome activation and cell
apoptosis in microglia. Biochem Biophys Res Commun. 485:499–505.
2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ji L, Wang Q, Huang F, An T, Guo F, Zhao
Y, Liu Y, He Y, Song Y and Qin G: FOXO1 overexpression attenuates
tubulointerstitial fibrosis and apoptosis in diabetic kidneys by
ameliorating oxidative injury via TXNIP-TRX. Oxid Med Cell Longev.
2019:32869282019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Han X, Wu YC, Meng M, Sun QS, Gao SM and
Sun H: Linarin prevents LPSinduced acute lung injury by suppressing
oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and
NFκB pathways. Int J Mol Med. 42:1460–1472. 2018.PubMed/NCBI
|
16
|
Chen J, Hui ST, Couto FM, Mungrue IN,
Davis DB, Attie AD, Lusis AJ, Davis RA and Shalev A:
Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL
signaling and pancreatic beta-cell mass and protects against
diabetes. FASEB J. 22:3581–3594. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Narita Y, Nagane M, Mishima K, Huang HJ,
Furnari FB and Cavenee WK: Mutant epidermal growth factor receptor
signaling down-regulates p27 through activation of the
phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer
Res. 62:6764–6769. 2002.PubMed/NCBI
|
18
|
Oyagbemi AA, Omobowale TO, Asenuga ER,
Ochigbo GO, Adejumobi AO, Adedapo AA and Yakubu MA: Sodium
arsenite-induced cardiovascular and renal dysfunction in rat via
oxidative stress and protein kinase B (Akt/PKB) signaling pathway.
Redox Rep. 22:467–477. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cui Q, Li X and Zhu H: Curcumin
ameliorates dopaminergic neuronal oxidative damage via activation
of the Akt/Nrf2 pathway. Mol Med Rep. 13:1381–1388. 2016.
View Article : Google Scholar
|
20
|
Wang L, Shen S, Xiao H, Ding F, Wang M, Li
G and Hu F: ARHGAP24 inhibits cell proliferation and cell cycle
progression and induces apoptosis of lung cancer via a
STAT6-WWP2-P27 axis. Carcinogenesis (bjz144). Aug 20–2019.Epub
ahead of print. View Article : Google Scholar
|
21
|
Wang Z, Yu C and Wang H: HOXA5 inhibits
the proliferation and induces the apoptosis of cervical cancer
cells via regulation of protein kinase B and p27. Oncol Rep.
41:1122–1130. 2019.
|
22
|
Williams V, Brichler S, Khan E, Chami M,
Dény P, Kremsdorf D and Gordien E: Large hepatitis delta antigen
activates STAT-3 and NF-κB via oxidative stress. J Viral Hepat.
19:744–753. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Smith RS Jr, Agata J, Xia CF, Chao L and
Chao J: Human endothelial nitric oxide synthase gene delivery
protects against cardiac remodeling and reduces oxidative stress
after myocardial infarction. Life Sci. 76:2457–2471. 2005.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao X, Qi H, Zhou J, Xu S and Gao Y: P27
protects cardiomyocytes from sepsis via activation of autophagy and
inhibition of apoptosis. Med Sci Monit. 24:8565–8576. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ma L, Liu H, Xie Z, Yang S, Xu W, Hou J
and Yu B: Ginsenoside Rb3 protects cardiomyocytes against
ischemia-reperfusion injury via the inhibition of JNK-mediated
NF-kappaB pathway: A mouse cardiomyocyte model. PLoS One.
9:e1036282014. View Article : Google Scholar
|
26
|
Kim DE, Kim B, Shin HS, Kwon HJ and Park
ES: The protective effect of hispidin against hydrogen
peroxide-induced apoptosis in H9c2 cardiomyoblast cells through
Akt/GSK-3β and ERK1/2 signaling pathway. Exp Cell Res. 327:264–275.
2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jun HO, Kim DH, Lee SW, Lee SH, Seo JH,
Kim JH, Kim JH, Yu YS, Min BH and Kim KW: Clusterin protects H9c2
cardiomyocytes from oxidative stress-induced apoptosis via
Akt/GSK-3β signaling pathway. Exp Mol Med. 43:53–61. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhai M, Li B, Duan W, Jing L, Zhang B,
Zhang M, Yu L, Liu Z, Yu B, Ren K, et al: Melatonin ameliorates
myocardial ischemia reperfusion injury through SIRT 3-dependent
regulation of oxidative stress and apoptosis. J Pineal Res.
63:e124192017. View Article : Google Scholar
|
29
|
Zhao D, Yang J and Yang L: Insights for
oxidative stress and mTOR signaling in myocardial
ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev.
2017:64374672017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu L, Li Q, Yu B, Yang Y, Jin Z, Duan W,
Zhao G, Zhai M, Liu L, Yi D, et al: Berberine attenuates myocardial
ischemia/reperfusion injury by reducing oxidative stress and
inflammation response: Role of silent information regulator 1. Oxid
Med Cell Longev. 2016:16896022016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Qian B, Yang Y, Yao Y, Liao Y and Lin Y:
Upregulation of vascular endothelial growth factor receptor-1
contributes to sevoflurane preconditioning-mediated
cardioprotection. Drug Des Devel Ther. 12:769–776. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pasqualin RC, Mostarda CT, de Souza LE,
Vane MF, Sirvente R, Otsuki DA, Torres MLA, Irigoyen MCC and Auler
JOC Jr: Sevoflurane preconditioning during myocardial
ischemia-reperfusion reduces infarct size and preserves autonomic
control of circulation in rats. Acta Cir Bras. 31:338–345. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang S, Zhao X, Yang S, Chen B and Shi J:
Salidroside alleviates high glucose-induced oxidative stress and
extracellular matrix accumulation in rat glomerular mesangial cells
by the TXNIP-NLRP3 inflammasome pathway. Chem Biol Interact.
278:48–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hou X, Yang S and Yin J: Blocking the
REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell
injury through repressing oxidative stress and apoptosis. Am J
Physiol Cell Physiol. 316:C104–C110. 2019. View Article : Google Scholar
|
35
|
Yao YL, Yang X, Xue XW, Fan LF and Jiao
XY: Effect of adenovirus-mediated TXNIP overexpression on apoptosis
and injury of H9C2 cardiomyocytes. Sheng Li Xue Bao. 65:309–318.
2013.In Chinese. PubMed/NCBI
|
36
|
Petrenko AB, Yamakura T, Sakimura K and
Baba H: Defining the role of NMDA receptors in anesthesia: Are we
there yet? Eur J Pharmacol. 723:29–37. 2014. View Article : Google Scholar
|
37
|
Yamaguchi F, Hirata Y, Akram H, Kamitori
K, Dong Y, Sui L and Tokuda M: FOXO/TXNIP pathway is involved in
the suppression of hepatocellular carcinoma growth by glutamate
antagonist MK-801. BMC cancer. 13:4682013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Papadia S, Soriano FX, Léveillé F, Martel
M-A, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J,
Stefovska V, et al: Synaptic NMDA receptor activity boosts
intrinsic antioxidant defenses. Nature neuroscience. 11:476–487.
2008. View
Article : Google Scholar : PubMed/NCBI
|
39
|
Mahmoud AM, Wilkinson FL, McCarthy EM,
Moreno-Martinez D, Langford-Smith A, Romero M, Duarte J and
Alexander MY: Endothelial microparticles prevent lipid-induced
endothelial damage via Akt/eNOS signaling and reduced oxidative
stress. FASEB J. 31:4636–4648. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zeng B, Liu L, Liao X, Zhang C and Ruan H:
Thyroid hormone protects cardiomyocytes from
H2O2 -induced oxidative stress via the
PI3K-AKT signaling pathway. Exp Cell Res. 380:205–215. 2019.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hussien-Ali A and Alifragis P: P27
Minimising the toxic effects of beta-Amyloid 42 on oxidative
stress. Biochem Pharmacol. 139:133–134. 2017. View Article : Google Scholar
|