1
|
Cross M, Smith E, Hoy D, Nolte S, Ackerman
I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, et al:
The global burden of hip and knee osteoarthritis: estimates from
the global burden of disease 2010 study. Ann Rheum Dis.
73:1323–1330. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Loeser RF, Goldring SR, Scanzello CR and
Goldring MB: Osteoarthritis: A disease of the joint as an organ.
Arthritis Rheum. 64:1697–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Szabo L and Salzman J: Detecting circular
RNAs: Bioinformatic and experimental challenges. Nat Rev Genet.
17:679–692. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cocquerelle C, Mascrez B, Hétuin D and
Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J.
7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J
and Ao Y: Circular RNA related to the chondrocyte ECM Regulates
MMP13 expression by functioning as a MiR-136 'sponge' in human
cartilage degradation. Sci Rep. 6:225722016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu H, Guo S, Li W and Yu P: The circular
RNA Cdr1as, via miR-7 and its targets, regulates insulin
transcription and secretion in islet cells. Sci Rep. 5:124532015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang K, Long B, Liu F, Wang JX, Liu CY,
Zhao B, Zhou LY, Sun T, Wang M, Yu T, et al: A circular RNA
protects the heart from pathological hypertrophy and heart failure
by targeting miR-223. Eur Heart J. 37:2602–2611. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li J, Yang J, Zhou P, Le Y, Zhou C, Wang
S, Xu D, Lin HK and Gong Z: Circular RNAs in cancer: Novel insights
into origins, properties, functions and implications. Am J Cancer
Res. 5:472–480. 2015.
|
10
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar
|
11
|
Ji Y, Fang QY, Wang SN, Zhang ZW, Hou ZJ,
Li JN and Fu SQ: Lnc-RNA BLACAT1 regulates differentiation of bone
marrow stromal stem cells by targeting miR-142-5p in
osteoarthritis. Eur Rev Med Pharmacol Sci. 24:2893–2901.
2020.PubMed/NCBI
|
12
|
Liu C, Gao J, Su G, Xiang Y and Wan L:
MicroRNA-1202 plays a vital role in osteoarthritis via KCNQ1OT1
has-miR-1202-ETS1 regulatory pathway. J Orthop Surg Res.
15:1302020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ren T, Wei P, Song Q, Ye Z, Wang Y and
Huang L: MiR-140-3p ameliorates the progression of osteoarthritis
via targeting CXCR4. Biol Pharm Bull. 43:810–816. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rademacher TW, Parekh RB and Dwek RA:
Glycobiology. Ann Rev Biochem. 57:785–838. 1988. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mizuochi T, Taniguchi T, Shimizu A and
Kobata A: Structural and numerical variations of the carbohydrate
moiety of immunoglobulin G. J Immunol. 129:2016–2020.
1982.PubMed/NCBI
|
16
|
Lopman BA, Trivedi T, Vicuña Y, Costantini
V, Collins N, Gregoricus N, Parashar U, Sandoval C, Broncano N,
Vaca M, et al: Norovirus infection and disease in an ecuadorian
birth cohort: Association of certain norovirus genotypes with host
FUT2 Secretor Status. J Infect Dis. 211:1813–1821. 2015. View Article : Google Scholar :
|
17
|
Chandler KB, Alamoud KA, Stahl VL, Nguyen
BC, Kartha VK, Bais MV, Nomoto K, Owa T, Monti S, Kukuruzinska MA
and Costello CE: β-Catenin/CBP inhibition alters epidermal growth
factor receptor fucosylation status in oral squamous cell
carcinoma. Mol Omics. 16:195–209. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu J, Wang Z, Pan Y, Ma J, Miao X, Qi X,
Zhou H and Jia L: MiR-26a and miR-26b mediate osteoarthritis
progression by targeting FUT4 via NF-κB signaling pathway. Int J
Biochem Cell Biol. 94:79–88. 2018. View Article : Google Scholar
|
19
|
Huang M, He YR, Liang LC, Huang Q and Zhu
ZQ: Circular RNA hsa_circ_0000745 may serve as a diagnostic marker
for gastric cancer. World J Gastroenterol. 23:6330–6338. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Charlier E, Relic B, Deroyer C, Malaise O,
Neuville S, Collée J, Malaise MG and De Seny D: Insights on
molecular mechanisms of chondrocytes death in osteoarthritis. Int J
Mol Sci. 17:21462016. View Article : Google Scholar
|
21
|
Mobasheri A: The future of osteoarthritis
therapeutics: Emerging biological therapy. Curr Rheumatol Rep.
15:3852013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dequeker J and Luyten FP: The history of
osteoarthritis-osteoarthrosis. Ann Rheum Dis. 67:5–10. 2008.
View Article : Google Scholar
|
23
|
Ding C, Jones G, Wluka AE and Cicuttini F:
What can we learn about osteoarthritis by studying a healthy person
against a person with early onset of disease? Curr Opin Rheumatol.
22:520–527. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Goldring MB and Goldring SR: Articular
cartilage and subchondral bone in the pathogenesis of
osteoarthritis. Ann NY Acad Sci. 1192:230–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pollard TC, Gwilym SE and Carr AJ: The
assessment of early osteoarthritis. J Bone Joint Surg Br.
90:411–421. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
D'Adamo S, Cetrullo S, Minguzzi M,
Silvestri Y, Borzì RM and Flamigni F: MicroRNAs and autophagy: Fine
players in the control of chondrocyte homeostatic activities in
osteoarthritis. Oxid Med Cell Longev. 2017:37201282017.PubMed/NCBI
|
27
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Malemud CJ: MicroRNAs and osteoarthritis.
Cells. 7:922018. View Article : Google Scholar :
|
29
|
He J, Zhang J and Wang D: Down-regulation
of microRNA-216b inhibits IL-1β-induced chondrocyte injury by
up-regulation of Smad3. Biosci Rep. 37:BSR201605882017. View Article : Google Scholar
|
30
|
Lin Z, Tian XY, Huang XX, He LL and Xu F:
microRNA-186 inhibition of PI3K-AKT pathway via SPP1 inhibits
chondrocyte apoptosis in mice with osteoarthritis. J Cell Physiol.
234:6042–6053. 2019. View Article : Google Scholar
|
31
|
Ma Y, Wu Y, Chen J, Huang K, Ji B, Chen Z,
Wang Q, Ma J, Shen S and Zhang J: miR-10a-5p promotes chondrocyte
apoptosis in osteoarthritis by targeting HOXA1. Mol Ther Nucleic
Acids. 14:398–409. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li H, Yang HH, Sun ZG, Tang HB and Min JK:
Whole-transcriptome sequencing of knee joint cartilage from
osteoarthritis patients. Bone Joint Res. 8:288–301. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang W, Zhang C, Hu C, Luo C, Zhong B and
Yu X: Circular RNA-CDR1as acts as the sponge of microRNA-641 to
promote osteoarthritis progression. J Inflamm (Lond). 17:82020.
View Article : Google Scholar
|
34
|
Li Z, Yuan B, Pei Z, Zhang K, Ding Z, Zhu
S, Wang Y, Guan Z and Cao Y: Circ_0136474 and MMP-13 suppressed
cell proliferation by competitive binding to miR-127-5p in
osteoarthritis. J Cell Mol Med. 23:6554–6564. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Y, Wu C, Yang Y, Ren Z, Lammi MJ and
Guo X: Preliminary exploration of hsa_circ_0032131 levels in
peripheral blood as a potential diagnostic biomarker of
osteoarthritis. Genet Test Mol Biomarkers. 23:717–721. 2019.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang Y, Wu C, Zhang Y, Yang Y, Ren Z,
Lammi MJ and Guo X: Screening for differentially expressed circRNA
between Kashin-Beck disease and osteoarthritis patients based on
circRNA chips. Clin Chim Acta. 501:92–101. 2020. View Article : Google Scholar
|
37
|
Li HZ, Lin Z, Xu XH, Lin N and Lu HD: The
potential roles of circRNAs in osteoarthritis: A coming journey to
find a treasure. Biosci Rep. 38:BSR201805422018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Saku A, Hirose K, Ito T, Iwata A, Sato T,
Kaji H, Tamachi T, Suto A, Goto Y, Domino SE, et al:
Fucosyltransferase 2 induces lung epithelial fucosylation and
exacerbates house dust mite-induced airway inflammation. J Allergy
Clin Immunol. 144:698–709.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lai TY, Chen IJ, Lin RJ, Liao GS, Yeo HL,
Ho CL, Wu JC, Chang NC, Lee AC and Yu AL: Fucosyltransferase 1 and
2 play pivotal roles in breast cancer cells. Cell Death Discov.
5:742019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dou P, Hu R, Zhu W, Tang Q, Li D, Li H and
Wang W: Long non-coding RNA HOTAIR promotes expression of ADAMTS-5
in human osteoarthritic articular chondrocytes. Pharmazie.
72:113–117. 2017.
|
41
|
Hu J, Wang Z, Shan Y, Pan Y, Ma J and Jia
L: Long non-coding RNA HOTAIR promotes osteoarthritis progression
via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis. 9:7112018.
View Article : Google Scholar
|
42
|
D'Arcy MS: Cell death: A review of the
major forms of apoptosis, necrosis and autophagy. Cell Biol Int.
43:582–592. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Musumeci G, Castrogiovanni P, Trovato FM,
Weinberg AM, Al-Wasiyah MK, Alqahtani MH and Mobasheri A:
Biomarkers of chondrocyte apoptosis and autophagy in
osteoarthritis. Int J Mol Sci. 16:20560–20575. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Steck E, Boeuf S, Gabler J, Werth N,
Schnatzer P, Diederichs S and Richter W: Regulation of H19 and its
encoded microRNA-675 in osteoarthritis and under anabolic and
catabolic in vitro conditions. J Mol Med (Berl). 90:1185–1195.
2012. View Article : Google Scholar
|
45
|
Li YF, Li SH, Liu Y and Luo YT: Long
noncoding RNA CIR promotes chondrocyte extracellular matrix
degradation in osteoarthritis by acting as a sponge for Mir-27b.
Cell Physiol Biochem. 43:602–610. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang W, Hsu P, Zhong B, Guo S and Zhang
C, Wang Y, Luo C, Zhan Y and Zhang C: MiR-34a enhances chondrocyte
apoptosis, senescence and facilitates development of osteoarthritis
by targeting DLL1 and regulating PI3K/AKT pathway. Cell Physiol
Biochem. 48:1304–1316. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ren C and Liang Z: Piperine alleviates
lipopolysaccharide-induced inflammatory injury by down-regulating
microRNA-127 in murine chondrogenic ATDC5 cells. Biomed
Pharmacother. 103:947–954. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yu CD, Miao WH, Zhang YY, Zou MJ and Yan
XF: Inhibition of miR-126 protects chondrocytes from IL-1β induced
inflammation via upregulation of Bcl-2. Bone Joint Res. 7:414–421.
2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sandell LJ and Aigner T: Articular
cartilage and changes in arthritis. An introduction: Cell biology
of osteoarthritis. Arthritis Res. 3:107–113. 2001. View Article : Google Scholar : PubMed/NCBI
|