Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review)
- Authors:
- Carolina Parga Martins Pereira
- Ana Carolina Remondi Souza
- Andrea Rodrigues Vasconcelos
- Pietra Sacramento Prado
- José João Name
-
Affiliations: Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311‑100, Brazil, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508‑000, Brazil - Published online on: November 4, 2020 https://doi.org/10.3892/ijmm.2020.4783
- Pages: 37-48
-
Copyright: © Pereira et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
World Health Organization Cardiovascular diseases (CVDs): Journal. 2017, https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)urisimplehttps://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed June 10, 2020. | |
Spahis S, Borys JM and Levy E: Metabolic syndrome as a multi-faceted risk factor for oxidative stress. Antioxid Redox Signal. 26:445–461. 2017. View Article : Google Scholar | |
Vona R, Gambardella L, Cittadini C, Straface E and Pietraforte D: Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev. 2019:82672342019. View Article : Google Scholar : PubMed/NCBI | |
Puddu P, Puddu GM, Galletti L, Cravero E and Muscari A: Mitochondrial dysfunction as an initiating event in atherogenesis: A plausible hypothesis. Cardiology. 103:137–141. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kishimoto Y, Yoshida H and Kondo K: Potential anti-atherosclerotic properties of astaxanthin. Mar Drugs. 14:352016. View Article : Google Scholar : | |
Guerin M, Huntley ME and Olaizola M: Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21:210–216. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hussein G, Sankawa U, Goto H, Matsumoto K and Watanabe H: Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 69:443–449. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Wang H: Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar Drugs. 13:4310–4330. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maoka T and Etoh H: Some biological functions of carotenoids in Japanese food. Functional Foods of the East. Shi J, Ho CT and Shahidi F: CRC Press; Boca Raton, FL: pp. 85–97. 2010, View Article : Google Scholar | |
Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S and Kondo K: Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb. 7:216–222. 2000. View Article : Google Scholar | |
Choi HD, Youn YK and Shin WG: Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant Foods Hum Nutr. 66:363–369. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa K, Kiko T and Miyazawa T, Carpentero Burdeos G, Kimura F, Satoh A and Miyazawa T: Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes. Br J Nutr. 105:1563–1571. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karppi J, Rissanen TH, Nyyssönen K, Kaikkonen J, Olsson AG, Voutilainen S and Salonen JT: Effects of astaxanthin supplementation on lipid peroxidation. Int J Vitam Nutr Res. 77:3–11. 2007. View Article : Google Scholar : PubMed/NCBI | |
Iwabayashi M, Fujioka N, Nomoto K, Miyazaki R, Takahashi H, Hibino S, Takahashi Y, Nishikawa K, Nishida M and Yonei Y: Efficacy and safety of eight-week treatment with astaxanthin in individuals screened for increased oxidative stress burden. Anti Aging Med. 6:15–21. 2009. View Article : Google Scholar | |
Kim JH, Chang MJ, Choi HD, Youn YK, Kim JT, Oh JM and Shin WG: Protective effects of Haematococcus astaxanthin on oxidative stress in healthy smokers. J Med Food. 14:1469–1475. 2011. View Article : Google Scholar : PubMed/NCBI | |
Choi HD, Kim JH, Chang MJ, Kyu-Youn Y and Shin WG: Effects of astaxanthin on oxidative stress in overweight and obese adults. Phytother Res. 25:1813–1818. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Chyun JH, Kim YK, Line LL and Chew BP: Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond). 7:182010. View Article : Google Scholar | |
Miyawaki H, Takahashi J, Tsukahara H and Takehara I: Effects of astaxanthin on human blood rheology. J Clin Biochem Nutr. 43:69–74. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mashhadi NS, Zakerkish M, Mohammadiasl J, Zarei M, Mohammadshahi M and Haghighizadeh MH: Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pac J Clin Nutr. 27:341–346. 2018.PubMed/NCBI | |
Yoshida H, Yanai H, Ito K, Tomono Y, Koikeda T, Tsukahara H and Tada N: Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis. 209:520–523. 2010. View Article : Google Scholar | |
Lorenz RT and Cysewski GR: Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160–167. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hulbert AJ, Pamplona R, Buffenstein R and Buttemer WA: Life and death: Metabolic rate, membrane composition, and life span of animals. Physiol Rev. 87:1175–1213. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barros MP, Pinto E, Colepicolo P and Pedersén M: Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: Scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun. 288:225–232. 2001. View Article : Google Scholar : PubMed/NCBI | |
McNulty HP, Byun J, Lockwood SF, Jacob RF and Mason RP: Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta. 1768:167–174. 2007. View Article : Google Scholar | |
Kidd P: Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 16:355–364. 2011. | |
Liaudet L, Rosenblatt-Velin N and Pacher P: Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol. 11:196–207. 2013.PubMed/NCBI | |
Halliwell B: Free radicals and antioxidants: A personal view. Nutr Rev. 52:253–265. 1994. View Article : Google Scholar : PubMed/NCBI | |
Maoka T, Tokuda H, Suzuki N, Kato H and Etoh H: Anti-oxidative, anti-tumor-promoting, and anti-carcinogensis activities of nitroastaxanthin and nitrolutein, the reaction prod-ucts of astaxanthin and lutein with peroxynitrite. Mar Drugs. 10:1391–1399. 2012. View Article : Google Scholar : PubMed/NCBI | |
Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy SA, Cannon CP and Antman EM: Diabetes and mortality following acute coronary syndromes. JAMA. 298:765–775. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cai H and Harrison DG: Endothelial dysfunction in cardiovas-cular diseases: The role of oxidant stress. Circ Res. 87:840–844. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Gao X, Potter BJ, Cao JM and Zhang C: Anti-LOX-1 rescues endothelial function in coronary arterioles in atheroscle-rotic ApoE knockout mice. Arterioscler Thromb Vasc Biol. 27:871–877. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhao ZW, Cai W, Lin YL, Lin QF, Jiang Q, Lin Z and Chen LL: Ameliorative effect of astaxanthin on endothelial dysfunction in streptozotocin-induced diabetes in male rats. Arzneimittelforschung. 61:239–246. 2011. View Article : Google Scholar : PubMed/NCBI | |
da Silva Garrote-Filho M, Bernardino-Neto M and Penha-Silva N: Influence of erythrocyte membrane stability in atherosclerosis. Curr Atheroscler Rep. 19:172017. View Article : Google Scholar : PubMed/NCBI | |
Pasterkamp G and Virmani R: The erythrocyte: A new player in atheromatous core formation. Heart. 88:115–116. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hussein G, Goto H, Oda S, Iguchi T, Sankawa U, Matsumoto K and Watanabe H: Antihypertensive potential and mechanism of action of astaxanthin: II. Vascular reactivity and hemorheology in spontaneously hypertensive rats. Biol Pharm Bull. 28:967–971. 2005. View Article : Google Scholar : PubMed/NCBI | |
Becker RC: The role of blood viscosity in the development and progression of coronary artery disease. Cleve Clin J Med. 60:353–358. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hussein G, Goto H, Oda S, Sankawa U, Matsumoto K and Watanabe H: Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol Pharm Bull. 29:684–688. 2006. View Article : Google Scholar : PubMed/NCBI | |
Monroy-Ruiz J, Sevilla MÁ, Carrón R and Montero MJ: Astaxanthin-enriched-diet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats. Pharmacol Res. 63:44–50. 2011. View Article : Google Scholar | |
Chen Y, Li S, Guo Y, Yu H, Bao Y, Xin X, Yang H, Ni X, Wu N and Jia D: Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction. Oxid Med Cell Longev. 2020:46291892020. View Article : Google Scholar : PubMed/NCBI | |
Sasaki Y, Kobara N, Higashino S, Giddings JC and Yamamoto J: Astaxanthin inhibits thrombosis in cerebral vessels of stroke-prone spontaneously hypertensive rats. Nutr Res. 31:784–789. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khan SK, Malinski T, Mason RP, Kubant R, Jacob RF, Fujioka K, Denstaedt SJ, King TJ, Jackson HL, Hieber AD, et al: Novel astaxanthin prodrug (CDX-085) attenuates thrombosis in a mouse model. Thromb Res. 126:299–305. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nordberg J and Arnér ES: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jekell A, Hossain A, Alehagen U, Dahlström U and Rosén A: Elevated circulating levels of thioredoxin and stress in chronic heart failure. Eur J Heart Fail. 6:883–890. 2004. View Article : Google Scholar : PubMed/NCBI | |
Aviram M: Introduction to the serial review on paraoxonases, oxidative stress, and cardiovascular diseases. Free Radic Biol Med. 37:1301–1303. 2004. View Article : Google Scholar : PubMed/NCBI | |
Augusti PR, Quatrin A, Somacal S, Conterato GM, Sobieski R, Ruviaro AR, Maurer LH, Duarte MM, Roehrs M and Emanuelli T: Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits. J Clin Biochem Nutr. 51:42–49. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui G, Li L, Xu W, Wang M, Jiao D, Yao B, Xu K, Chen Y, Yang S, Long M, et al: Astaxanthin protects ochratoxin a-induced oxidative stress and apoptosis in the heart via the Nrf2 pathway. Oxid Med Cell Longev. 2020:76391092020. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Sun C, Hao Q and Cheng J: Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Naunyn Schmiedebergs Arch Pharmacol. 392:341–348. 2019. View Article : Google Scholar | |
Wu Q, Zhang XS, Wang HD, Zhang X, Yu Q, Li W, Zhou ML and Wang XL: Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs. 12:6125–6141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kavitha K, Thiyagarajan P, Rathna Nandhini J, Mishra R and Nagini S: Chemopreventive effects of diverse dietary phyto-chemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie. 95:1629–1639. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tripathi DN and Jena GB: Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: Role of Nrf2, p53, p38 and phase-II enzymes. Mutat Res. 696:69–80. 2010. View Article : Google Scholar | |
Saw CL, Yang AY, Guo Y and Kong AN: Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food Chem Toxicol. 62:869–875. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Huang A, Hu J, Zhong Z, Liu Y, Li Z, Pan X and Liu Z: Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience. 303:558–568. 2015. View Article : Google Scholar : PubMed/NCBI | |
Visioli F and Artaria C: Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 8:39–63. 2017. View Article : Google Scholar | |
Li J, Dai W, Xia Y, Chen K, Li S, Liu T, Zhang R, Wang J, Lu W, Zhou Y, et al: Astaxanthin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cells via inhibition of NF-κB P65 and Wnt/B-catenin in vitro. Mar Drugs. 13:6064–6081. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kochi T, Shimizu M, Sumi T, Kubota M, Shirakami Y, Tanaka T and Moriwaki H: Inhibitory effects of astaxanthin on azoxymethane-induced colonic preneoplastic lesions in C57/BL/KsJ-db/db mice. BMC Gastroenterol. 14:2122014. View Article : Google Scholar : PubMed/NCBI | |
Kavitha K, Kowshik J, Kishore TK, Baba AB and Nagini S: Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling path-ways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochim Biophys Acta. 1830:4433–4444. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yasui Y, Hosokawa M, Mikami N, Miyashita K and Tanaka T: Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cyto-kines. Chem Biol Interact. 193:79–87. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagendraprabhu P and Sudhandiran G: Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest New Drugs. 29:207–224. 2011. View Article : Google Scholar | |
Moroni F, Ammirati E, Norata GD, Magnoni M and Camici PG: The role of monocytes and macrophages in human atherosclerosis, plaque neoangiogenesis, and atherothrombosis. Mediators Inflamm. 2019:74343762019. View Article : Google Scholar : PubMed/NCBI | |
Hashizume M and Mihara M: Blockade of IL-6 and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger receptor induction. Eur J Pharmacol. 689:249–254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zou TB, Zhu SS, Luo F, Li WQ, Sun XR and Wu HF: Effects of astaxanthin on reverse cholesterol transport and atherosclerosis in mice. Biomed Res Int. 2017:46259322017. View Article : Google Scholar : PubMed/NCBI | |
Kishimoto Y, Tani M, Uto-Kondo H, Iizuka M, Saita E, Sone H, Kurata H and Kondo K: Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. Eur J Nutr. 49:119–126. 2010. View Article : Google Scholar | |
Santos SD, Cahú TB, Firmino GO, de Castro CC, Carvalho LB Jr, Bezerra RS and Filho JL: Shrimp waste extract and astaxanthin: Rat alveolar macrophage, oxidative stress and inflammation. J Food Sci. 77:H141–H146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Bai SK, Lee KS, Namkoong S, Na HJ, Ha KS, Han JA, Yim SV, Chang K, Kwon YG, et al: Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol Cells. 16:97–105. 2003.PubMed/NCBI | |
Franceschelli S, Pesce M, Ferrone A, De Lutiis MA, Patruno A, Grilli A, Felaco M and Speranza L: Astaxanthin treatment confers protection against oxidative stress in U937 cells stimulated with lipopolysaccharide reducing O2-production. PLoS One. 9:e883592014. View Article : Google Scholar | |
Macedo RC, Bolin AP, Marin DP and Otton R: Astaxanthin addition improves human neutrophils function: In vitro study. Eur J Nutr. 49:447–457. 2010. View Article : Google Scholar : PubMed/NCBI | |
Choi SK, Park YS, Choi DK and Chang HI: Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J Microbiol Biotechnol. 18:1990–1996. 2008. | |
Kim YJ, Kim YA and Yokozawa T: Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin. J Agric Food Chem. 57:8793–8797. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abdelzaher LA, Imaizumi T, Suzuki T, Tomita K, Takashina M and Hattori Y: Astaxanthin alleviates oxidative stress insults-related derangements in human vascular endothelial cells exposed to glucose fluctuations. Life Sci. 150:24–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
Speranza L, Pesce M, Patruno A, Franceschelli S, de Lutiis MA, Grilli A and Felaco M: Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar Drugs. 10:890–899. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jones WK, Brown M, Wilhide M, He S and Ren X: NF-kappaB in cardiovascular disease: Diverse and specific effects of a 'general' transcription factor? Cardiovasc Toxicol. 5:183–202. 2005. View Article : Google Scholar | |
Pashkow FJ, Watumull DG and Campbell CL: Astaxanthin: A novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol. 101:58D–68D. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S, May MJ and Kopp EB: NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 16:225–260. 1998. View Article : Google Scholar : PubMed/NCBI | |
Woronicz JD, Gao X, Cao Z, Rothe M and Goeddel DV: IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science. 278:866–869. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A and Rao A: IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 278:860–866. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zandi E, Rothwarf DM, Delhase M, Hayakawa M and Karin M: The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 91:243–252. 1997. View Article : Google Scholar : PubMed/NCBI | |
DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E and Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 388:548–554. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell. 109(Suppl): S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang HH, Garruti G, Liu M, Portincasa P and Wang DQ: Cholesterol and lipoprotein metabolism and atherosclerosis: Recent advances in reverse cholesterol transport. Ann Hepatol. 16(Suppl 1): S27–S42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khera AV and Rader DJ: Future therapeutic directions in reverse cholesterol transport. Curr Atheroscler Rep. 12:73–81. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tall AR and Yvan-Charvet L: Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 15:104–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shao B, Tang C, Sinha A, Mayer PS, Davenport GD, Brot N, Oda MN, Zhao XQ and Heinecke JW: Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 114:1733–1742. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clarke MC and Bennett MR: Cause or consequence: What does macrophage apoptosis do in atherosclerosis? Arterioscler Thromb Vasc Biol. 29:153–155. 2009. View Article : Google Scholar | |
Monteiro R and Azevedo I: Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010:2896452010. View Article : Google Scholar : PubMed/NCBI | |
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229–317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K and Hüttemann M: Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 47:9–23. 2013. View Article : Google Scholar : | |
Curek GD, Cort A, Yucel G, Demir N, Ozturk S, Elpek GO, Savas B and Aslan M: Effect of astaxanthin on hepatocellular injury following ischemia/reperfusion. Toxicology. 267:147–153. 2010. View Article : Google Scholar | |
Li J, Wang F, Xia Y, Dai W, Chen K, Li S, Liu T, Zheng Y, Wang J, Lu W, et al: Astaxanthin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy via the ROS/MAPK pathway in mice. Mar Drugs. 13:3368–3387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Chen Y, Xie X, Yao D, Ding C and Chen M: Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am J Transl Res. 11:1884–1894. 2019. | |
Lauver DA, Lockwood SF and Lucchesi BR: Disodium disuccinate astaxanthin (Cardax) attenuates complement activation and reduces myocardial injury following ischemia/reperfusion. J Pharmacol Exp Ther. 314:686–692. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, Nakanuma Y, Kaneko S and Ota T: Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 5:171922015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu M, Fu X, Zhang Z, Zhu L, Zheng X and Liu J: Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota. Nutrients. 10:12982018. View Article : Google Scholar : | |
Lyu Y, Wu L, Wang F, Shen X and Lin D: Carotenoid supple-mentation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Exp Biol Med (Maywood). 243:613–620. 2018. View Article : Google Scholar | |
Tang WH, Kitai T and Hazen SL: Gut microbiota in cardiovascular health and disease. Circ Res. 120:1183–1196. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saad MJ, Santos A and Prada PO: Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 31:283–293. 2016. | |
Wu L, Lyu Y, Srinivasagan R, Wu J, Ojo B, Tang M, El-Rassi GD, Metzinger K, Smith BJ, Lucas EA, et al: Astaxanthin-shifted gut microbiota is associated with inflammation and metabolic homeostasis in mice. J Nutr. 150:2687–2698. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ou W, Liao Z, Yu G, Xu H, Liang M, Mai K and Zhang Y: The effects of dietary astaxanthin on intestinal health of juvenile tiger puffer takifugu rubripes in terms of antioxidative status, inflammatory response and microbiota. Aquaculture Nutrition. 25:466–476. 2018. | |
Zhang L, Cao W, Gao Y, Yang R, Zhang X, Xu J and Tang Q: Astaxanthin (ATX) enhances the intestinal mucosal functions in immunodeficient mice. Food Funct. 11:3371–3381. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yang L, Chin Y, Liu F, Li RW, Yuan S, Xue C, Xu J and Tang Q: Astaxanthin n-octanoic acid diester ameliorates insulin resistance and modulates gut microbiota in high-fat and high-sucrose dietfed mice. Int J Mol Sci. 21:21492020. View Article : Google Scholar | |
Wang J, Liu S, Wang H, Xiao S, Li C, Li Y and Liu B: Xanthophyllomyces dendrorhous-derived astaxanthin regulates lipid metabolism and gut microbiota in obese mice induced by a high-fat diet. Mar Drugs. 17:3372019. View Article : Google Scholar : | |
Linton MRF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, Doran AC and Vickers KC: The role of lipids and lipoproteins in atherosclerosis. Endotext Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas G, Koch C, Kopp P, et al: MDText Com, Inc; South Dartmouth, MA: 2000 | |
Strassheim D, Dempsey EC, Gerasimovskaya E, Stenmark K and Karoor V: Role of inflammatory cell subtypes in heart failure. J Immunol Res. 2019:21640172019. View Article : Google Scholar : PubMed/NCBI | |
Gröschel C, Sasse A, Röhrborn C, Monecke S, Didié M, Elsner L, Kruse V, Bunt G, Lichtman AH, Toischer K, et al: T helper cells with specificity for an antigen in cardiomyocytes promote pressure overload-induced progression from hypertrophy to heart failure. Sci Rep. 7:159982017. View Article : Google Scholar : PubMed/NCBI | |
Fukunaga T, Soejima H, Irie A, Sugamura K, Oe Y, Tanaka T, Nagayoshi Y, Kaikita K, Sugiyama S, Yoshimura M, et al: Relation between CD4+ T-cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardio-myopathy. Am J Cardiol. 100:483–488. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kallikourdis M, Martini E, Carullo P, Sardi C, Roselli G, Greco CM, Vignali D, Riva F, Ormbostad Berre AM, Stølen TO, et al: T cell costimulation blockade blunts pressure overload-induced heart failure. Nat Commun. 8:146802017. View Article : Google Scholar : PubMed/NCBI | |
Gisterå A and Hansson GK: The immunology of atherosclerosis. Nat Rev Nephrol. 13:368–380. 2017. View Article : Google Scholar | |
Swirski FK and Nahrendorf M: Leukocyte behavior in athero-sclerosis, myocardial infarction, and heart failure. Science. 339:161–166. 2013. View Article : Google Scholar | |
Stemme S, Faber B, Holm J, Wiklund O, Witztum JL and Hansson GK: T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA. 92:3893–3897. 1995. View Article : Google Scholar : PubMed/NCBI | |
Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U and Hansson GK: Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 145:33–43. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tripathi DN and Jena GB: Intervention of astaxanthin against cyclophosphamide-induced oxidative stress and DNA damage: A study in mice. Chem Biol Interact. 180:398–406. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bolin AP, Guerra BA, Nascimento SJ and Otton R: Changes in lymphocyte oxidant/antioxidant parameters after carbonyl and antioxidant exposure. Int Immunopharmacol. 14:690–697. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bolin AP, Macedo RC, Marin DP, Barros MP and Otton R: Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes. Cell Biol Toxicol. 26:457–467. 2010. View Article : Google Scholar : PubMed/NCBI | |
Campoio TR, Oliveira FA and Otton R: Oxidative stress in human lymphocytes treated with fatty acid mixture: Role of carotenoid astaxanthin. Toxicol In Vitro. 25:1448–1456. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pilinska MA, capital Ka CD, Rushkovsky SR and Dybska OB: Genoprotective properties of astaxanthin revealed by ionizing radiation exposure in vitro on human peripheral blood lymphocytes. Probl Radiac Med Radiobiol. 21:141–148. 2016.In English, Ukrainian. View Article : Google Scholar : PubMed/NCBI | |
Otton R, Marin DP, Bolin AP, de Cássia Santos Macedo R, Campoio TR, Fineto C Jr, Guerra BA, Leite JR, Barros MP and Mattei R: Combined fish oil and astaxanthin supplementation modulates rat lymphocyte function. Eur J Nutr. 51:707–718. 2012. View Article : Google Scholar | |
Mahmoud FF, Haines DD, Abul HT, Abal AT, Onadeko BO and Wise JA: In vitro effects of astaxanthin combined with ginkgolide B on T lymphocyte activation in peripheral blood mononuclear cells from asthmatic subjects. J Pharmacol Sci. 94:129–136. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lin KH, Lin KC, Lu WJ, Thomas PA, Jayakumar T and Sheu JR: Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo. Int J Mol Sci. 17:442015. View Article : Google Scholar | |
Diao W, Chen W, Cao W, Yuan H, Ji H, Wang T, Chen W, Zhu X, Zhou H, Guo H and Zhao X: Astaxanthin protects against renal fibrosis through inhibiting myofibroblast activation and promoting CD8+ T cell recruitment. Biochim Biophys Acta Gen Subj. 1863:1360–1370. 2019. View Article : Google Scholar | |
Park JS, Mathison BD, Hayek MG, Massimino S, Reinhart GA and Chew BP: Astaxanthin stimulates cell-mediated and humoral immune responses in cats. Vet Immunol Immunopathol. 144:455–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chew BP, Wong MW, Park JS and Wong TS: Dietary beta-carotene and astaxanthin but not canthaxanthin stimulate splenocyte function in mice. Anticancer Res. 19:5223–5227. 1999. | |
Jyonouchi H, Hill RJ, Tomita Y and Good RA: Studies of immunomodulating actions of carotenoids. I. Effects of beta-carotene and astaxanthin on murine lymphocyte functions and cell surface marker expression in in vitro culture system. Nutr Cancer. 16:93–105. 1991. View Article : Google Scholar : PubMed/NCBI | |
Mahmoud FF, Haines D, Al-Awadhi R, Arifhodzic N, Abal A, Azeamouzi C, Al-Sharah S and Tosaki A: In vitro suppression of lymphocyte activation in patients with seasonal allergic rhinitis and pollen-related asthma by cetirizine or azelastine in combination with ginkgolide B or astaxanthin. Acta Physiol Hung. 99:173–184. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jyonouchi H, Zhang L and Tomita Y: Studies of immunomodulating actions of carotenoids. II. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-cell activation. Nutr Cancer. 19:269–280. 1993. View Article : Google Scholar : PubMed/NCBI |