Location, function and role of stromal cell‑derived factors and possible implications in cancer (Review)
- Authors:
- Wenjing Gong
- Tracey A. Martin
- Andrew J. Sanders
- Aihua Jiang
- Ping Sun
- Wen G. Jiang
-
Affiliations: Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK, Department of Anaesthesiology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China - Published online on: December 4, 2020 https://doi.org/10.3892/ijmm.2020.4811
- Pages: 435-443
-
Copyright: © Gong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Micke P and Ostman A: Tumour-stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 45(Suppl 2): S163–S175. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Escudero-Esparza A, Douglas-Jones A, Mansel RE and Jiang WG: Transcript analyses of stromal cell derived factors (SDFs): SDF-2, SDF-4 and SDF-5 reveal a different pattern of expression and prognostic association in human breast cancer. Int J Oncol. 35:205–211. 2009.PubMed/NCBI | |
Wang M, Lin T, Wang Y, Gao S, Yang Z, Hong X and Chen G: CXCL12 suppresses cisplatin-induced apoptosis through activation of JAK2/STAT3 signaling in human non-small-cell lung cancer cells. Onco Targets Ther. 10:3215–3224. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miller MC and Mayo KH: Chemokines from a structural perspective. Int J Mol Sci. 18:20882017. View Article : Google Scholar : | |
Mélik-Parsadaniantz S and Rostène W: Chemokines and neuro-modulation. J Neuroimmunol. 198:62–68. 2008. View Article : Google Scholar | |
Samarendra H, Jones K, Petrinic T, Silva MA, Reddy S, Soonawalla Z and Gordon-Weeks A: A meta-analysis of CXCL12 expression for cancer prognosis. Br J Cancer. 117:124–135. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ling X, Spaeth E, Chen Y, Shi Y, Zhang W, Schober W, Hail N Jr, Konopleva M and Andreeff M: The CXCR4 antagonist AMD3465 regulates oncogenic signaling and invasiveness in vitro and prevents breast cancer growth and metastasis in vivo. PLoS One. 8:e584262013. View Article : Google Scholar : PubMed/NCBI | |
Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, Schilling MK and Menger MD: Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia. 9:862–870. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kryczek I, Wei S, Keller E, Liu R and Zou W: Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol. 292:C987–C995. 2007. View Article : Google Scholar | |
Wu M, Chen Q, Li D, Li X, Li X, Huang C, Tang Y, Zhou Y, Wang D, Tang K, et al: LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem. 103:245–255. 2008. View Article : Google Scholar | |
Dehghani M, Kianpour S, Zangeneh A and Mostafavi-Pour Z: CXCL12 modulates prostate cancer cell adhesion by altering the levels or activities of β1-containing integrins. Int J Cell Biol. 2014:9817502014. View Article : Google Scholar | |
Shen X, Wang S, Wang H, Liang M, Xiao L and Wang Z: The role of SDF-1/CXCR4 axis in ovarian cancer metastasis. J Huazhong Univ Sci Technolog Med Sci. 29:363–367. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Guo S, Liu M, Burow ME and Wang G: Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem. 26:3026–3041. 2019. View Article : Google Scholar | |
Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, et al: CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 61:1591–1602. 2015. View Article : Google Scholar : | |
Wald O: CXCR4 based therapeutics for non-small cell lung cancer (NSCLC). J Clin Med. 7:3032018. View Article : Google Scholar : | |
Otsuka S and Bebb G: The CXCR4/SDF-1 chemokine receptor axis: A new target therapeutic for non-small cell lung cancer. J Thorac Oncol. 3:1379–1383. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang W, Niu W, Liu E, Liu X, Wang J, Peng C, Liu S, Xu L, Wang L and Niu J: SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin alphavbeta6. Carcinogenesis. 35:282–291. 2014. View Article : Google Scholar | |
Walentowicz-Sadlecka M, Sadlecki P, Bodnar M, Marszalek A, Walentowicz P, Sokup A, Wilińska-Jankowska A and Grabiec M: Stromal derived factor-1 (SDF-1) and its receptors CXCR4 and CXCR7 in endometrial cancer patients. PLoS One. 9:e846292014. View Article : Google Scholar : PubMed/NCBI | |
Mao W, Yi X, Qin J, Tian M and Jin G: CXCL12/CXCR4 axis improves migration of neuroblasts along corpus callosum by stimulating MMP-2 secretion after traumatic brain injury in rats. Neurochem Res. 41:1315–1322. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahirwar DK, Nasser MW, Ouseph MM, Elbaz M, Cuitiño MC, Kladney RD, Varikuti S, Kaul K, Satoskar AR, Ramaswamy B, et al: Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene. 37:4428–4442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding Y, Guan J, Ji T, Zhao Y and Nie G: Reshaping prostate tumor microenvironment To suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 13:12357–12371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mahadevan D and Von Hoff DD: Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 6:1186–1197. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, et al: Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 113:6215–6224. 2009. View Article : Google Scholar : | |
Kong L, Guo S, Liu C, Zhao Y, Feng C, Liu Y, Wang T and Li C: Overexpression of SDF-1 activates the NF-kappaB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells. Int J Oncol. 48:1085–1094. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, Hong SH, Ren L, Wong D, Korz W, Merzouk A, et al: Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis. 25:201–211. 2008. View Article : Google Scholar | |
Meng W, Xue S and Chen Y: The role of CXCL12 in tumor microenvironment. Gene. 641:105–110. 2018. View Article : Google Scholar | |
Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI, Kim S, Cher ML and Chinni SR: Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol Cancer. 15:682016. View Article : Google Scholar : PubMed/NCBI | |
Ray P, Lewin SA, Mihalko LA, Schmidt BT, Luker KE and Luker GD: Noninvasive imaging reveals inhibition of ovarian cancer by targeting CXCL12-CXCR4. Neoplasia. 13:1152–1161. 2011. View Article : Google Scholar | |
Li H, Chen Y, Xu N, Yu M, Tu X, Chen Z, Lin M, Xie B, Fu J and Han L: AMD3100 inhibits brain-specific metastasis in lung cancer via suppressing the SDF-1/CXCR4 axis and protecting blood-brain barrier. Am J Transl Res. 9:5259–5274. 2017. | |
Tong X, Ma Y, Deng H, Wang X, Liu S, Yan Z, Peng S and Fan H: The SDF-1 rs1801157 polymorphism is associated with cancer risk: An update pooled analysis and FPRP test of 17,876 participants. Sci Rep. 6:274662016. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP: Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. Trends Biochem Sci. 25:48–50. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hamada T, Tashiro K, Tada H, Inazawa J, Shirozu M, Shibahara K, Nakamura T, Martina N, Nakano T and Honjo T: Isolation and characterization of a novel secretory protein, stromal cell-derived factor-2 (SDF-2) using the signal sequence trap method. Gene. 176:211–214. 1996. View Article : Google Scholar : PubMed/NCBI | |
Vendrell E, Ribas M, Valls J, Solé X, Grau M, Moreno V, Capellà G and Peinado MA: Genomic and transcriptomic prognostic factors in R0 Dukes B and C colorectal cancer patients. Int J Oncol. 30:1099–1107. 2007.PubMed/NCBI | |
Fukuda S, Sumii M, Masuda Y, Takahashi M, Koike N, Teishima J, Yasumoto H, Itamoto T, Asahara T, Dohi K and Kamiya K: Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family. Biochem Biophys Res Commun. 280:407–414. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lorenzon-Ojea AR, Caldeira W, Ribeiro AF, Fisher SJ, Guzzo CR and Bevilacqua E: Stromal cell derived factor-2 (Sdf2): A novel protein expressed in mouse. Int J Biochem Cell Biol. 53:262–270. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lorenzon-Ojea AR, Yung HW, Burton GJ and Bevilacqua E: The potential contribution of stromal cell-derived factor 2 (SDF2) in endoplasmic reticulum stress response in severe preeclampsia and labor-onset. Biochim Biophys Acta Mol Basis Dis. 1866:1653862020. View Article : Google Scholar | |
Walter P and Ron D: The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334:1081–1086. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schott A, Ravaud S, Keller S, Radzimanowski J, Viotti C, Hillmer S, Sinning I and Strahl S: Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum. J Biol Chem. 285:18113–18121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Willis S, Villalobos VM, Gevaert O, Abramovitz M, Williams C, Sikic BI and Leyland-Jones B: Single gene prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One. 11:e01491832016. View Article : Google Scholar : PubMed/NCBI | |
Giulianelli S, Herschkowitz JI, Patel V, Lamb CA, Gutkind JS, Molinolo A, Perou CM and Lanari C: MPA-induced gene expression and stromal and parenchymal gene expression profiles in luminal murine mammary carcinomas with different hormonal requirements. Breast Cancer Res Treat. 129:49–67. 2011. View Article : Google Scholar | |
Takahashi K, Tanaka M, Yashiro M, Matsumoto M, Ohtsuka A, Nakayama KI, Izumi Y, Nagayama K, Miura K, Iwao H and Shiota M: Protection of stromal cell-derived factor 2 by heat shock protein 72 prevents oxaliplatin-induced cell death in oxaliplatin-resistant human gastric cancer cells. Cancer Lett. 378:8–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Honoré B: The rapidly expanding CREC protein family: Members, localization, function, and role in disease. Bioessays. 31:262–277. 2009. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Li Z, Zhu H, Wang C, Zheng W, He Y, Song J, Wang W, Zhou X, Lu X, et al: A novel role of Cab45-G in mediating cell migration in cancer cells. Int J Biol Sci. 12:677–687. 2016. View Article : Google Scholar : PubMed/NCBI | |
Honoré B and Vorum H: The CREC family, a novel family of multiple EF-hand, low-affinity Ca(2+)-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett. 466:11–18. 2000. View Article : Google Scholar : PubMed/NCBI | |
Scherer PE, Lederkremer GZ, Williams S, Fogliano M, Baldini G and Lodish HF: Cab45, a novel (Ca2+)-binding protein localized to the Golgi lumen. J Cell Biol. 133:257–268. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Xu S, Xu Y, Lu W, Liu L, Yue D, Teng J and Chen J: Cab45S promotes cell proliferation through SERCA2b inhibition and Ca2+ signaling. Oncogene. 35:35–46. 2016. View Article : Google Scholar | |
Lam PP, Hyvärinen K, Kauppi M, Cosen-Binker L, Laitinen S, Keränen S, Gaisano HY and Olkkonen VM: A cytosolic splice variant of Cab45 interacts with Munc18b and impacts on amylase secretion by pancreatic acini. Mol Biol Cell. 18:2473–2480. 2007. View Article : Google Scholar : PubMed/NCBI | |
Grønborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins MG, et al: Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics. 5:157–171. 2006. View Article : Google Scholar | |
Ji H, Greening DW, Kapp EA, Moritz RL and Simpson RJ: Secretome-based proteomics reveals sulindac-modulated proteins released from colon cancer cells. Proteomics Clin Appl. 3:433–451. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blank B and von Blume J: Cab45-Unraveling key features of a novel secretory cargo sorter at the trans-Golgi network. Eur J Cell Biol. 96:383–390. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mittal V: Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gialeli C, Theocharis AD and Karamanos NK: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar | |
Bisel B, Wang Y, Wei JH, Xiang Y, Tang D, Miron-Mendoza M, Yoshimura S, Nakamura N and Seemann J: ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J Cell Biol. 182:837–843. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prigozhina NL and Waterman-Storer CM: Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol. 14:88–98. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kienzle C and von Blume J: Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol. 24:584–593. 2014. View Article : Google Scholar : PubMed/NCBI | |
Weiss H, Amberger A, Widschwendter M, Margreiter R, Ofner D and Dietl P: Inhibition of store-operated calcium entry contributes to the anti-proliferative effect of non-steroidal anti-inflammatory drugs in human colon cancer cells. Int J Cancer. 92:877–882. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz M and Christofori G: EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI | |
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS and Ali AN: Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis. 38:766–780. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shirozu M, Tada H, Tashiro K, Nakamura T, Lopez ND, Nazarea M, Hamada T, Sato T, Nakano T and Honjo T: Characterization of novel secreted and membrane proteins isolated by the signal sequence trap method. Genomics. 37:273–280. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, He B, You L and Jablons DM: Roles of secreted frizzled-related proteins in cancer. Acta Pharmacol Sin. 28:1499–1504. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhou Q, Zhou D, Huang C, Meng X and Li J: Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep. 69:403–408. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arce L, Yokoyama NN and Waterman ML: Diversity of LEF/TCF action in development and disease. Oncogene. 25:7492–7504. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Rong X, Chen Y and Su L: Methylation-mediated loss of SFRP2 enhances invasiveness of non-small cell lung cancer cells. Hum Exp Toxicol. 37:155–162. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li P, Zhao S and Hu Y: SFRP2 modulates nonsmall cell lung cancer A549 cell apoptosis and metastasis by regulating mitochondrial fission via Wnt pathways. Mol Med Rep. 20:1925–1932. 2019.PubMed/NCBI | |
Zeng X, Zhang Y, Xu H, Zhang T, Xue Y and An R: Secreted frizzled related protein 2modulates epithelial-mesenchymal transition and stemness via Wnt/β-catenin signaling in chorio-carcinoma. Cell Physiol Biochem. 50:1815–1831. 2018. View Article : Google Scholar | |
Cheng YY, Yu J, Wong YP, Man EP, To KF, Jin VX, Li J, Tao Q, Sung JJ, Chan FK and Leung WK: Frequent epigenetic inactivation of secreted frizzled-related protein 2(SFRP2) by promoter methylation in human gastric cancer. Br J Cancer. 97:895–901. 2007. View Article : Google Scholar : PubMed/NCBI | |
Perry AS, O'Hurley G, Raheem OA, Brennan K, Wong S, O'Grady A, Kennedy AM, Marignol L, Murphy TM, Sullivan L, et al: Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer. 132:1771–1780. 2013. View Article : Google Scholar | |
Bhangu JS, Beer A, Mittlböck M, Tamandl D, Pulverer W, Schönthaler S, Taghizadeh H, Stremitzer S, Kaczirek K, Gruenberger T, et al: Circulating free methylated tumor DNA markers for sensitive assessment of tumor burden and early response monitoring in patients receiving systemic chemotherapy for colorectal cancer liver metastasis. Ann Surg. 268:894–902. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Wei B, Chen A, Zhao H, Huang K and Chen J: Methylation-mediated loss of SFRP2 enhances melanoma cell invasion via Wnt signaling. Am J Transl Res. 8:1502–1509. 2016.PubMed/NCBI | |
Liu S, Chen X, Chen R, Wang J, Zhu G, Jiang J, Wang H, Duan S and Huang J: Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget. 8:36354–36367. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shih YL, Hsieh CB, Yan MD, Tsao CM, Hsieh TY, Liu CH and Lin YW: Frequent concomitant epigenetic silencing of SOX1 and secreted frizzled-related proteins (SFRPs) in human hepatocel-lular carcinoma. J Gastroenterol Hepatol. 28:551–559. 2013. View Article : Google Scholar | |
Yang Q, Huang T, Ye G, Wang B and Zhang X: Methylation of SFRP2 gene as a promising noninvasive biomarker using feces in colorectal cancer diagnosis: A systematic meta-analysis. Sci Rep. 6:333392016. View Article : Google Scholar : PubMed/NCBI | |
Lee JL, Lin CT, Chueh LL and Chang CJ: Autocrine/paracrine secreted Frizzled-related protein 2induces cellular resistance to apoptosis: A possible mechanism of mammary tumorigenesis. J Biol Chem. 279:14602–14609. 2004. View Article : Google Scholar : PubMed/NCBI | |
Courtwright A, Siamakpour-Reihani S, Arbiser JL, Banet N, Hilliard E, Fried L, Livasy C, Ketelsen D, Nepal DB, Perou CM, et al: Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Res. 69:4621–4628. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee JL, Chang CJ, Chueh LL and Lin CT: Secreted frizzled related protein 2(sFRP2) decreases susceptibility to UV-induced apoptosis in primary culture of canine mammary gland tumors by NF-kappaB activation or JNK suppression. Breast Cancer Res Treat. 100:49–58. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee JL, Chang CJ, Wu SY, Sargan DR and Lin CT: Secreted frizzled-related protein 2(SFRP2) is highly expressed in canine mammary gland tumors but not in normal mammary glands. Breast Cancer Res Treat. 84:139–149. 2004. View Article : Google Scholar : PubMed/NCBI | |
Viros A, Girotti MR and Marais R: So you can teach old fibro-blasts new tricks. Cancer Discov. 6:581–583. 2016. View Article : Google Scholar | |
Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos C, et al: A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther. 12:685–695. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Xiao Y, Wen R, Zhang Y, Li X, Wang H, Huang J, Liu J, Long T and Tang J: Promoting roles of the secreted frizzled-related protein 2as a Wnt agonist in lung cancer cells. Oncol Rep. 34:2259–2266. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li Q and Chen H: DNA methylation and histone modifications of Wnt genes by genistein during colon cancer development. Carcinogenesis. 34:1756–1763. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang WA, Groenendyk J and Michalak M: Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta. 1843:2143–2149. 2014. View Article : Google Scholar : PubMed/NCBI |