1
|
Singhal S, Mehta J, Desikan R, Ayers D,
Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar
M, et al: Antitumor activity of thalidomide in refractory multiple
myeloma. N Engl J Med. 341:1565–1571. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Scott K, Hayden PJ, Will A, Wheatley K and
Coyne I: Bortezomib for the treatment of multiple myeloma. Cochrane
Database Syst Rev. 4:CD0108162016.PubMed/NCBI
|
3
|
Dimopoulos MA, San-Miguel J, Belch A,
White D, Benboubker L, Cook G, Leiba M, Morton J, Ho PJ, Kim K, et
al: Daratumumab plus lenalidomide and dexamethasone versus
lenalidomide and dexa-methasone in relapsed or refractory multiple
myeloma: Updated analysis of POLLUX. Haematologica. 103:2088–2096.
2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cao Y, Wan N, Liang Z, Xie J, Wang S, Lin
T, Zhang T and Jiang J: Treatment outcomes in patients with newly
diagnosed multiple myeloma who are ineligible for stem-cell
transplantation: Systematic review and network meta-analysis. Clin
Lymphoma Myeloma Leuk. 19:e478–e488. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zeng Z, Lin J and Chen J: Bortezomib for
patients with previously untreated multiple myeloma: A systematic
review and meta-analysis of randomized controlled trials. Ann
Hematol. 92:935–943. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
André T, Kotelevets L, Vaillant JC,
Coudray AM, Weber L, Prévot S, Parc R, Gespach C and Chastre E:
Vegf, Vegf-B, Vegf -C and their receptors KDR, FLT-1 and FLT-4
during the neoplastic progression of human colonic mucosa. Int J
Cancer. 86:174–181. 2000. View Article : Google Scholar
|
7
|
Kurebayashi J, Otsuki T, Kunisue H, Mikami
Y, Tanaka K, Yamamoto S and Sonoo H: Expression of vascular
endothelial growth factor (VEGF) family members in breast cancer.
Jpn J Cancer Res. 90:977–981. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Decaussin M, Sartelet H, Robert C, Moro D,
Claraz C, Brambilla C and Brambilla E: Expression of vascular
endothelial growth factor (VEGF) and its two receptors
(VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung
carcinomas (NSCLCs): Correlation with angiogenesis and survival. J
Pathol. 188:369–377. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jussila L, Valtola R, Partanen TA, Salven
P, Heikkilä P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M,
Tschachler E, et al: Lymphatic endothelium and Kaposi's sarcoma
spindle cells detected by antibodies against the vascular
endothelial growth factor receptor-3. Cancer Res. 58:1599–1604.
1998.PubMed/NCBI
|
10
|
Vacca A, Ribatti D, Roncali L, Ranieri G,
Serio G, Silvestris F and Dammacco F: Bone marrow angiogenesis and
progression in multiple myeloma. Br J Haematol. 87:503–508. 1994.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Peterson TR, Laplante M, Thoreen CC,
Sancak Y, Kang SA, Kuehl WM, Gray NS and Sabatini DM: DEPTOR is an
mTOR inhibitor frequently overexpressed in multiple myeloma cells
and required for their survival. Cell. 137:873–886. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao Y, Xiong X and Sun Y: DEPTOR, an mTOR
inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin
ligase and regulates survival and autophagy. Mol Cell. 44:304–316.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
de la Rubia J and Such E: DEPTOR
expression and response to thalidomide: Toward a new therapeutic
target in multiple myeloma? Leuk Lymphoma. 51:1960–1961. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Boyd KD, Walker BA, Wardell CP, Ross FM,
Gregory WM, Davies FE and Morgan GJ: High expression levels of the
mammalian target of rapamycin inhibitor DEPTOR are predictive of
response to thalidomide in myeloma. Leuk Lymphoma. 51:2126–2129.
2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bruneau S, Nakayama H, Woda CB, Flynn EA
and Briscoe DM: DEPTOR regulates vascular endothelial cell
activation and proinflammatory and angiogenic responses. Blood.
122:1833–1842. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ding Y, Shan L, Nai W, Lin X, Zhou L, Dong
X, Wu H, Xiao M, Zhou X, Wang L, et al: DEPTOR deficiency-mediated
mTORc1 hyperactivation in vascular endothelial cells promotes
angiogenesis. Cell Physiol Biochem. 46:520–531. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang H, Chen J, Zeng Z, Que W and Zhou L:
Knockdown of DEPTOR induces apoptosis, increases chemosensitivity
to doxorubicin and suppresses autophagy in RPMI-8226 human multiple
myeloma cells in vitro. Int J Mol Med. 31:1127–1134. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang HR, Chen JM, Zeng ZY and Que WZ:
Knockdown of DEPTOR inhibits cell proliferation and increases
chemosensitivity to melphalan in human multiple myeloma RPMI-8226
cells via inhibiting PI3K/AKT activity. J Int Med Res. 41:584–595.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cury PCC, Higashi F, Zacchi FFS, Palhares
RB, Quero AA, Dias ALMS, Crusoé EQ and Hungria VTM: Effect of
thalidomide on bone marrow angiogenesis in multiple myeloma
patients. Hematol Transfus Cell Ther. 42:159–163. 2020. View Article : Google Scholar :
|
20
|
Redza-Dutordoir M and Averill-Bates DA:
Activation of apoptosis signalling pathways by reactive oxygen
species. Biochim Biophys Acta. 1863:2977–2992. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu T, Zhang L, Joo D and Sun SC: NF-κB
signaling in inflammation. Signal Transduct Target Ther.
2:170232017. View Article : Google Scholar
|
22
|
Sun K, Xu L, Jing Y, Han Z, Chen X, Cai C,
Zhao P, Zhao X, Yang L and Wei L: Autophagy-deficient Kupffer cells
promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent
inflammation and fibrosis during the preneoplastic stage of
hepatocarcinogenesis. Cancer Lett. 388:198–207. 2017. View Article : Google Scholar
|
23
|
Shi L, Campbell G, Jones WD, Campagne F,
Wen Z, Walker SJ, Su Z, Chu TM, Goodsaid FM, Pusztai L, et al: The
MicroArray Quality Control (MAQC)-II study of common practices for
the development and validation of microarray-based predictive
models. Nat Biotechnol. 28:827–838. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang X, Lin Y, Song C, Sibille E and Tseng
GC: Detecting disease-associated genes with confounding variable
adjustment and the impact on genomic meta-analysis: With
application to major depressive disorder. BMC Bioinformatics.
13:522012. View Article : Google Scholar : PubMed/NCBI
|
26
|
He W, Fu L, Yan Q, Zhou Q, Yuan K, Chen L
and Han Y: Gene set enrichment analysis and meta-analysis
identified 12 key genes regulating and controlling the prognosis of
lung adenocarcinoma. Oncol Lett. 17:5608–5618. 2019.PubMed/NCBI
|
27
|
Rajkumar SV, Dimopoulos MA, Palumbo A,
Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E,
Richardson P, et al: International myeloma working group updated
criteria for the diagnosis of multiple myeloma. Lancet Oncol.
15:e538–e548. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee N, Lee H, Moon SY, Sohn JY, Hwang SM,
Yoon OJ, Youn HS, Eom HS and Kong SY: Adverse prognostic impact of
bone marrow microvessel density in multiple myeloma. Ann Lab Med.
35:563–569. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Quwaider D, Corchete LA,
Misiewicz-Krzeminska I, Sarasquete ME, Pérez JJ, Krzeminski P, Puig
N, Mateos MV, García-Sanz R, Herrero AB and Gutiérrez NC: DEPTOR
maintains plasma cell differentiation and favorably affects
prognosis in multiple myeloma. J Hematol Oncol. 10:922017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Carrasco DR, Tonon G, Huang Y, Zhang Y,
Sinha R, Feng B, Stewart JP, Zhan F, Khatry D, Protopopova M, et
al: High-resolution genomic profiles define distinct
clinicopathogenetic subgroups of multiple myeloma patients. Cancer
Cell. 9:313–325. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mercurio A, Adriani G, Catalano A, Carocci
A, Rao L, Lentini G, Cavalluzzi MM, Franchini C, Vacca A and Corbo
F: A mini-review on thalidomide: Chemistry, mechanisms of action,
therapeutic potential and anti-angiogenic properties in multiple
myeloma. Curr Med Chem. 24:2736–2744. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen J, Zhu H, Liu Q, Ning D, Zhang Z,
Zhang L, Mo J, Du P, Liu X, Song S, et al: DEPTOR induces a partial
epithelial-to-mesenchymal transition and metastasis via autocrine
TGFβ1 signaling and is associated with poor prognosis in
hepatocellular carcinoma. J Exp Clin Cancer Res. 38:2732019.
View Article : Google Scholar
|
33
|
Hu B, Shi D, Lv X, Wu F, Chen S and Shao
Z: Prognostic and clinicopathological significance of DEPTOR
expression in cancer patients: A meta-analysis. Onco Targets Ther.
11:5083–5092. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Reddy N, Hernandez-Ilizaliturri FJ, Deeb
G, Roth M, Vaughn M, Knight J, Wallace P and Czuczman MS:
Immunomodulatory drugs stimulate natural killer-cell function,
alter cytokine production by dendritic cells, and inhibit
angiogenesis enhancing the anti-tumour activity of rituximab in
vivo. Br J Haematol. 140:36–45. 2008.
|
35
|
Haslett PA, Corral LG, Albert M and Kaplan
G: Thalidomide costimulates primary human T lymphocytes,
preferentially inducing proliferation, cytokine production, and
cytotoxic responses in the CD8+ subset. J Exp Med. 187:1885–1892.
1998. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chang DH, Liu N, Klimek V, Hassoun H,
Mazumder A, Nimer SD, Jagannath S and Dhodapkar MV: Enhancement of
ligand-dependent activation of human natural killer T cells by
lenalidomide: Therapeutic implications. Blood. 108:618–621. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sampaio EP, Sarno EN, Galilly R, Cohn ZA
and Kaplan G: Thalidomide selectively inhibits tumor necrosis
factor alpha production by stimulated human monocytes. J Exp Med.
173:699–703. 1991. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mitsiades N, Mitsiades CS, Poulaki V,
Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP and
Anderson KC: Apoptotic signaling induced by immunomodulatory
thalidomide analogs in human multiple myeloma cells: Therapeutic
implications. Blood. 99:4525–4530. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Escoubet-Lozach L, Lin IL, Jensen-Pergakes
K, Brady HA, Gandhi AK, Schafer PH, Muller GW, Worland PJ, Chan KW
and Verhelle D: Pomalidomide and lenalidomide induce p21 WAF-1
expression in both lymphoma and multiple myeloma through a
LSD1-mediated epigenetic mechanism. Cancer Res. 69:7347–7356. 2009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Hu Y, Su H, Liu C, Wang Z, Huang L, Wang
Q, Liu S, Chen S, Zhou J, Li P, et al: DEPTOR is a direct NOTCH1
target that promotes cell proliferation and survival in T-cell
leukemia. Oncogene. 36:1038–1047. 2017. View Article : Google Scholar
|
41
|
Khandia R, Dadar M, Munjal A, Dhama K,
Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK and
Chaicumpa W: A comprehensive review of autophagy and its various
roles in infectious, non-infectious, and lifestyle diseases:
Current knowledge and prospects for disease prevention, novel drug
design, and therapy. Cells. 8:6742019. View Article : Google Scholar :
|
42
|
Koukourakis MI, Giatromanolaki A,
Fylaktakidou K, Sivridis E, Zois CE, Kalamida D, Mitrakas A,
Pouliliou S, Karagounis IV, Simopoulos K, et al: SMER28 is a
mTOR-independent small molecule enhancer of autophagy that protects
mouse bone marrow and liver against radiotherapy. Invest New Drugs.
36:773–781. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Roca-Agujetas V, de Dios C, Lestón L, Mari
M, Morales A and Colell A: Recent insights into the mitochondrial
role in autophagy and its regulation by oxidative stress. Oxid Med
Cell Longev. 2019:38093082019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhao L, Wang X, Yu Y, Deng L, Chen L, Peng
X, Jiao C, Gao G, Tan X, Pan W, et al: OTUB1 protein suppresses
mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1
inhibitor DEPTOR. J Biol Chem. 293:4883–4892. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang Q, Zhou Y, Rychahou P, Harris JW,
Zaytseva YY, Liu J, Wang C, Weiss HL, Liu C, Lee EY and Evers BM:
Deptor is a novel target of Wnt/β-catenin/c-Myc and contributes to
colorectal cancer cell growth. Cancer Res. 78:3163–3175. 2018.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Catena V and Fanciulli M: Deptor: Not only
a mTOR inhibitor. J Exp Clin Cancer Res. 36:122017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jakob C, Sterz J, Zavrski I, Heider U,
Kleeberg L, Fleissner C, Kaiser M and Sezer O: Angiogenesis in
multiple myeloma. Eur J Cancer. 42:1581–1590. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Khan MA, Assiri AM and Broering DC:
Complement and macrophage crosstalk during process of angiogenesis
in tumor progression. J Biomed Sci. 22:582015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Padmanaban V, Krol I, Suhail Y, Szczerba
BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for
metastasis in multiple models of breast cancer. Nature.
573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI
|