1
|
Snipelisky D, Chaudhry SP and Stewart GC:
The many faces of heart failure. Card Electrophysiol Clin.
11:11–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tomasoni D, Adamo M, Lombardi CM and Metra
M: Highlights in heart failure. ESC Heart Fail. 6:1105–1127. 2019.
View Article : Google Scholar
|
3
|
Bozkurt B and Khalaf S: Heart failure in
women. Methodist Debakey Cardiovasc J. 13:216–223. 2017.
|
4
|
Melander S and Miller S: Heart failure:
Overcoming the physiologic dilemma through evidence-based practice.
Nurs Clin North Am. 51:13–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ziaeian B and Fonarow GC: Epidemiology and
aetiology of heart failure. Nat Rev Cardiol. 13:368–378. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Martinelli AEM, Maranhao RC, Carvalho PO,
Freitas FR, Silva BMO, Curiati MNC, Kalil Filho R and
Pereira-Barretto AC: Cholesteryl ester transfer protein (CETP), HDL
capacity of receiving cholesterol and status of inflammatory
cytokines in patients with severe heart failure. Lipids Health Dis.
17:2422018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bui AL, Horwich TB and Fonarow GC:
Epidemiology and risk profile of heart failure. Nat Rev Cardiol.
8:30–41. 2011. View Article : Google Scholar :
|
8
|
Rosik J, Szostak B, Machaj F and Pawlik A:
Potential targets of gene therapy in the treatment of heart
failure. Expert Opin Ther Targets. 22:811–816. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Fan Z, Gao S, Chen Y, Xu B, Yu C, Yue M
and Tan X: Integrative analysis of competing endogenous RNA
networks reveals the functional lncRNAs in heart failure. J Cell
Mol Med. 22:4818–4829. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Turton N, Swan R, Mahenthiralingam T,
Pitts D and Dykes IM: The functions of long non-coding RNA during
embryonic cardiovascular development and its potential for
diagnosis and treatment of congenital heart disease. J Cardiovasc
Dev Dis. 6:212019. View Article : Google Scholar :
|
11
|
Zhao Y, Wu J, Liangpunsakul S and Wang L:
Long non-coding RNA in liver metabolism and disease: Current
status. Liver Res. 1:163–167. 2017. View Article : Google Scholar
|
12
|
Yan Y, Song D, Wu J and Wang J: Long
non-coding RNAs link oxidized low-density lipoprotein with the
inflammatory response of macrophages in atherogenesis. Front
Immunol. 11:242020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sirtori CR, Ruscica M, Calabresi L, Chiesa
G, Giovannoni R and Badimon JJ: HDL therapy today: From
atherosclerosis, to stent compatibility to heart failure. Ann Med.
51:345–359. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu Q and Yi X: Down-regulation of long
noncoding RNA MALAT1 protects hippocampal neurons against excessive
autophagy and apoptosis via the PI3K/Akt signaling pathway in rats
with epilepsy. J Mol Neurosci. 65:234–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu L, Tan L, Yao J and Yang L: Long
non-coding RNA MALAT1 regulates cholesterol accumulation in
ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol
Med Rep. 21:1761–1770. 2020.PubMed/NCBI
|
16
|
Wang L, Qi Y, Wang Y, Tang H, Li Z, Wang
Y, Tang S and Zhu H: LncRNA MALAT1 suppression protects endothelium
against oxLDL-induced inflammation via inhibiting expression of
MiR-181b target gene TOX. Oxid Med Cell Longev. 2019:82458102019.
View Article : Google Scholar
|
17
|
Huang Y: The novel regulatory role of
lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med.
22:5768–5775. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shah P, Bristow MR and Port JD: MicroRNAs
in heart failure, cardiac transplantation, and myocardial recovery:
Biomarkers with therapeutic potential. Curr Heart Fail Rep.
14:454–464. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bauersachs R, Zeymer U, Briere JB, Marre
C, Bowrin K and Huelsebeck M: Burden of coronary artery disease and
peripheral artery disease: A literature review. Cardiovasc Ther.
2019:82950542019. View Article : Google Scholar
|
20
|
Huang R, Cao Y, Li H, Hu Z, Zhang H, Zhang
L, Su W, Xu Y, Liang L, Melgiri ND, et al: miR-532-3p-CSF2RA axis
as a key regulator of vulnerable atherosclerotic plaque formation.
Can J Cardiol. 36:1782–1794. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Arola-Arnal A and Blade C:
Proanthocyanidins modulate microRNA expression in human HepG2
cells. PLoS One. 6:e259822011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gao K, Zhang J, Gao P, Wang Q, Liu Y, Liu
J, Zhang Y, Li Y, Chang H, Ren P, et al: Qishen granules exerts
cardioprotective effects on rats with heart failure via regulating
fatty acid and glucose metabolism. Chin Med. 15:212020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zatroch KK, Knight CG, Reimer JN and Pang
DS: Refinement of intraperitoneal injection of sodium pentobarbital
for euthanasia in laboratory rats (Rattus norvegicus). BMC Vet Res.
13:602017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fan C, Tang X, Ye M, Zhu G, Dai Y, Yao Z
and Yao X: Qi-Li-Qiang-Xin alleviates isoproterenol-induced
myocardial injury by inhibiting excessive autophagy via activating
AKT/mTOR pathway. Front Pharmacol. 10:13292019. View Article : Google Scholar :
|
25
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao W, Geng D, Li S, Chen Z and Sun M:
LncRNA HOTAIR influences cell growth, migration, invasion, and
apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer
Med. 7:842–855. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou YX, Wang C, Mao LW, Wang YL, Xia LQ,
Zhao W, Shen J and Chen J: Long noncoding RNA HOTAIR mediates the
estrogen-induced metastasis of endometrial cancer cells via the
miR-646/NPM1 axis. Am J Physiol Cell Physiol. 314:C690–C701. 2018.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Choi SS, Kim ES, Koh M, Lee SJ, Lim D,
Yang YR, Jang HJ, Seo KA, Min SH, Lee IH, et al: A novel
non-agonist peroxisome proliferator-activated receptor γ (PPARγ)
ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase
5 (CDK5) and improves insulin sensitivity. J Biol Chem.
289:26618–26629. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Madej-Pilarczyk A, Niezgoda A, Janus M,
Wojnicz R, Marchel M, Fidziańska A, Grajek S and
Hausmanowa-Petrusewicz I: Limb-girdle muscular dystrophy with
severe heart failure overlapping with lipodystrophy in a patient
with LMNA mutation p.Ser334del. J Appl Genet. 58:87–91. 2017.
View Article : Google Scholar :
|
30
|
Cao Z, Pan X, Yang Y, Huang Y and Shen HB:
The lncLocator: A subcellular localization predictor for long
non-coding RNAs based on a stacked ensemble classifier.
Bioinformatics. 34:2185–2194. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rogers C and Bush N: Heart failure:
Pathophysiology, diagnosis, medical treatment guidelines, and
nursing management. Nurs Clin North Am. 50:787–799. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Scheuermann JC and Boyer LA: Getting to
the heart of the matter: Long non-coding RNAs in cardiac
development and disease. EMBO J. 32:1805–1816. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Toraih EA, El-Wazir A, Alghamdi SA,
Alhazmi AS, El-Wazir M, Abdel-Daim MM and Fawzy MS: Association of
long non-coding RNA MIAT and MALAT1 expression profiles in
peripheral blood of coronary artery disease patients with previous
cardiac events. Genet Mol Biol. 42:509–518. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hartupee J and Mann DL: Neurohormonal
activation in heart failure with reduced ejection fraction. Nat Rev
Cardiol. 14:30–38. 2017. View Article : Google Scholar :
|
35
|
Guo X, Wu X, Han Y, Tian E and Cheng J:
LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced
apoptosis through sponging miR-558 to enhance ULK1-mediated
protective autophagy. J Cell Physiol. 234:10842–10854. 2019.
View Article : Google Scholar
|
36
|
Sadoh WE, Eregie CO, Nwaneri DU and Sadoh
AE: The diagnostic value of both troponin T and creatinine kinase
isoenzyme (CK-MB) in detecting combined renal and myocardial
injuries in asphyxiated infants. PLoS One. 9:e913382014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang X, Wang J, Tu T, Iyan Z, Mungun D,
Yang Z and Guo Y: Remote ischemic postconditioning protects against
myocardial ischemia-reperfusion injury by inhibition of the
RAGE-HMGB1 pathway. Biomed Res Int. 2018:45656302018.PubMed/NCBI
|
38
|
Yan B, Liu S, Li X, Zhong Y, Tong F and
Yang S: Preconditioning with endoplasmic reticulum stress
alleviated heart ischemia/reperfusion injury via modulating
IRE1/ATF6/RACK1/PERK and PGC-1α in diabetes mellitus. Biomed
Pharmacother. 118:1094072019. View Article : Google Scholar
|
39
|
Fan YZ, Huang H, Wang S, Tan GJ and Zhang
QZ: Effect of lncRNA MALAT1 on rats with myocardial infarction
through regulating ERK/MAPK signaling pathway. Eur Rev Med
Pharmacol Sci. 23:9041–9049. 2019.PubMed/NCBI
|
40
|
Abdalla S, Fu X, Elzahwy SS, Klaetschke K,
Streichert T and Quitterer U: Up-regulation of the cardiac lipid
metabolism at the onset of heart failure. Cardiovasc Hematol Agents
Med Chem. 9:190–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kurpińska AK, Jarosz A, Ożgo M and
Skrzypczak WF: Changes in lipid metabolism during last month of
pregnancy and first two months of lactation in primiparous
cows-analysis of apolipoprotein expression pattern and changes in
concentration of total cholesterol, HDL, LDL, triglycerides. Pol J
Vet Sci. 18:291–298. 2015. View Article : Google Scholar
|
42
|
Li J, Lei HT, Cao L, Mi YN, Li S and Cao
YX: Crocin alleviates coronary atherosclerosis via inhibiting lipid
synthesis and inducing M2 macrophage polarization. Int
Immunopharmacol. 55:120–127. 2018. View Article : Google Scholar
|
43
|
Yan C, Chen J and Chen N: Long noncoding
RNA MALAT1 promotes hepatic steatosis and insulin resistance by
increasing nuclear SREBP-1c protein stability. Sci Rep.
6:226402016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Shirazi LF, Bissett J, Romeo F and Mehta
JL: Role of inflammation in heart failure. Curr Atheroscler Rep.
19:272017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang Y, Zhang H, Zhang Z, Li S, Jiang W,
Li X and Lv J: LncRNA MALAT1 cessation antagonizes
hypoxia/reoxygenation injury in hepatocytes by inhibiting apoptosis
and inflammation via the HMGB1-TLR4 axis. Mol Immunol. 112:22–29.
2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Cao DW, Liu MM, Duan R, Tao YF, Zhou JS,
Fang WR, Zhu JR, Niu L and Sun JG: The lncRNA Malat1 functions as a
ceRNA to contribute to berberine-mediated inhibition of HMGB1 by
sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol
Sin. 41:22–33. 2020. View Article : Google Scholar :
|
47
|
Fragasso G: Deranged cardiac metabolism
and the pathogenesis of heart failure. Card Fail Rev. 2:8–13. 2016.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang L, Xu F, Zhang M, Shang XY, Xie X, Fu
T, Li JP and Li HL: Role of LncRNA MALAT-1 in hypoxia-induced PC12
cell injury via regulating p38MAPK signaling pathway. Neurosci
Lett. 670:41–47. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li L, Wang Q, Yuan Z, Chen A, Liu Z, Wang
Z and Li H: LncRNA-MALAT1 promotes CPC proliferation and migration
in hypoxia by up-regulation of JMJD6 via sponging miR-125. Biochem
Biophys Res Commun. 499:711–718. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang X, Song C, Zhou X, Han X, Li J, Wang
Z, Shang H, Liu Y and Cao H: Mitochondria associated MicroRNA
expression profiling of heart failure. Biomed Res Int.
2017:40425092017.PubMed/NCBI
|
51
|
Bayoumi AS, Teoh JP, Aonuma T, Yuan Z,
Ruan X, Tang Y, Su H, Weintraub NL and Kim IM: MicroRNA-532
protects the heart in acute myocardial infarction, and represses
prss23, a positive regulator of endothelial-to-mesenchymal
transition. Cardiovasc Res. 113:1603–1614. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bayes-Genis A, Núñez J, Zannad F, Ferreira
JP, Anker SD, Cleland JG, Dickstein K, Filippatos G, Lang CC, Ng
LL, et al: The PCSK9-LDL receptor axis and outcomes in heart
failure: BIOSTAT-CHF subanalysis. J Am Coll Cardiol. 70:2128–2136.
2017. View Article : Google Scholar : PubMed/NCBI
|