Involvement of non‑coding RNAs in the pathogenesis of myocardial ischemia/reperfusion injury (Review)
- Authors:
- Qi Li
- Zhuqing Li
- Zhixing Fan
- Ying Yang
- Chengzhi Lu
-
Affiliations: School of Medicine, Nankai University, Tianjin 300071, P.R. China, Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China, Department of Cardiology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, P.R. China - Published online on: February 5, 2021 https://doi.org/10.3892/ijmm.2021.4875
- Article Number: 42
This article is mentioned in:
Abstract
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, et al: Heart Disease and Stroke Statistics-2019 Update: A report from the American Heart Association. Circulation. 139:e56–e528. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ibanez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang EW, Han YY and Jia XS: PAFR-deficiency alleviates myocardial ischemia/reperfusion injury in mice via suppressing inflammation, oxidative stress and apoptosis. Biochem Biophys Res Commun. 495:2475–2481. 2018. View Article : Google Scholar | |
Zheng J, Li J, Kou B, Yi Q and Shi T: MicroRNA-30e protects the heart against ischemia and reperfusion injury through autophagy and the Notch1/Hes1/Akt signaling pathway. Int J Mol Med. 41:3221–3230. 2018. | |
Xu T, Ding W, Ao X, Chu X, Wan Q, Wang Y, Xiao D, Yu W, Li M, Yu F and Wang J: ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol. 20:414–426. 2019. View Article : Google Scholar | |
Stein LD: Human genome: End of the beginning. Nature. 431:915–916. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lorenzen JM and Thum T: Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol. 12:360–373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eddy SR: Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2:919–929. 2001. View Article : Google Scholar : PubMed/NCBI | |
Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Altesha MA, Ni T, Khan A, Liu K and Zheng X: Circular RNA in cardiovascular disease. J Cell Physiol. 234:5588–5600. 2019. View Article : Google Scholar | |
Hao YL, Fang HC, Zhao HL, Li XL, Luo Y, Wu BQ, Fu MJ, Liu W, Liang JJ and Chen XH: The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. Am J Physiol Cell Physiol. 315:C380–C388. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma M, Hui J, Zhang QY, Zhu Y, He Y and Liu XJ: Long non-coding RNA nuclear-enriched abundant transcript 1 inhibition blunts myocardial ischemia reperfusion injury via autophagic flux arrest and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis. 277:113–122. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Meister G and Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature. 431:343–349. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Vernooy SY, Guo M and Hay BA: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 13:790–795. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kwon C, Han Z, Olson EN and Srivastava D: MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA. 102:18986–18991. 2005. View Article : Google Scholar | |
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ and Bridges CR: The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol. 310:H528–H541. 2016. View Article : Google Scholar : | |
Cai W, Zhang J and Yang J, Fan Z, Liu X, Gao W, Zeng P, Xiong M, Ma C and Yang J: MicroRNA-24 attenuates vascular remodeling in diabetic rats through PI3K/Akt signaling pathway. Nutr Metab Cardiovasc Dis. 29:621–632. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Niu J, Tian B and Zhao M: MicroRNA-193b protects against myocardial ischemia-reperfusion injury in mouse by targeting mastermind-like 1. J Cell Biochem. 120:14088–14094. 2019. View Article : Google Scholar | |
Wei Z, Qiao S, Zhao J, Liu Y, Li Q, Wei Z, Dai Q, Kang L and Xu B: MiRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. Life Sci. 232:1166322019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Qian XM, He QC and Weng JK: MiR-421 inhibition protects H9c2 cells against hypoxia/reoxygenation-induced oxidative stress and apoptosis by targeting Sirt3. Perfusion. 35:255–262. 2020. View Article : Google Scholar | |
Wang S, Cheng Z, Chen X and Xue H: MicroRNA-135a protects against myocardial ischemia-reperfusion injury in rats by targeting protein tyrosine phosphatase 1B. J Cell Biochem. 120:10421–10433. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zou J, Liu X and Zhang Q: MicroRNA-138 attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis by targeting HIF1-α. Exp Ther Med. 18:3325–3332. 2019.PubMed/NCBI | |
Wan X, Yao B, Ma Y, Liu Y, Tang Y, Hu J, Li M, Fu S, Zheng X and Yin D: MicroRNA-128-1-5p attenuates myocardial ischemia/reperfusion injury by suppressing Gadd45g-mediated apoptotic signaling. Biochem Biophys Res Commun. 530:314–321. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen ZX, He D, Mo QW, Xie LP, Liang JR, Liu L and Fu WJ: MiR-129-5p protects against myocardial ischemia-reperfusion injury via targeting HMGB1. Eur Rev Med Pharmacol Sci. 24:4440–4450. 2020.PubMed/NCBI | |
Yang S, Li H and Chen L: MicroRNA-140 attenuates myocardial ischemia-reperfusion injury through suppressing mitochondria-mediated apoptosis by targeting YES1. J Cell Biochem. 120:3813–3821. 2019. View Article : Google Scholar | |
Liu Z, Tao B, Fan S, Pu Y, Xia H and Xu L: MicroRNA-145 protects against myocardial ischemia reperfusion injury via CaMKII-Mediated antiapoptotic and anti-inflammatory pathways. Oxid Med Cell Longev. 2019:89486572019. View Article : Google Scholar : PubMed/NCBI | |
Niu S, Xu L, Yuan Y, Yang S, Ning H, Qin X, Xin P, Yuan D, Jiao J and Zhao Y: Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochem Biophys Res Commun. 530:54–59. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wu S, Zhang XS, Wang DM and Qian CY: MicroRNA-489 promotes cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury through inhibiting SPIN1. Eur Rev Med Pharmacol Sci. 23:6683–6690. 2019.PubMed/NCBI | |
Li Q and Yang J, Zhang J, Liu XW, Yang CJ, Fan ZX, Wang HB, Yang Y, Zheng T and Yang J: Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J Cell Physiol. 235:3753–3767. 2020. View Article : Google Scholar | |
Zhang H, Wang J, Du A and Li Y: MiR-483-3p inhibition ameliorates myocardial ischemia/reperfusion injury by targeting the MDM4/p53 pathway. Mol Immunol. 125:9–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu HY, Wu JL and Ni ZL: Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6. Cell Cycle. 18:621–637. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gwanyanya A, Amuzescu B, Zakharov SI, Macianskiene R, Sipido KR, Bolotina VM, Vereecke J and Mubagwa K: Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: Permeation of divalent cations and pH-mediated regulation. J Physiol. 559:761–776. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Fan Z, Yang J, Ding J, Yang C and Chen L: MicroRNA-22 attenuates myocardial ischemia-reperfusion injury via an anti-inflammatory mechanism in rats. Exp Ther Med. 12:3249–3255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yang J, Liu XW, Ding JW, Li S, Guo X, Yang CJ, Fan ZX, Wang HB, Li Q, et al: Down-regulation of miR-327 alleviates ischemia/reperfusion-induced myocardial damage by targeting RP105. Cell Physiol Biochem. 49:1049–1063. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Jiang J, Wang YL and Wu YQ: Overexpression of microRNA-590-3p promotes the proliferation of and inhibits the apoptosis of myocardial cells through inhibition of the NF-κB signaling pathway by binding to RIPK1. J Cell Biochem. 120:3559–3573. 2019. View Article : Google Scholar | |
Ding S, Liu D, Wang L, Wang G and Zhu Y: Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 372:128–135. 2020. View Article : Google Scholar | |
Liu ZY, Pan HW, Cao Y, Zheng J, Zhang Y, Tang Y, He J, Hu YJ, Wang CL, Zou QC, et al: Downregulated microRNA-330 suppresses left ventricular remodeling via the TGF-β1/Smad3 signaling pathway by targeting SRY in mice with myocardial ischemia-reperfusion injury. J Cell Physiol. 234:11440–11450. 2019. View Article : Google Scholar | |
Wu J, Liang J, Li M, Lin M, Mai L, Huang X, Liang J, Hu Y and Huang Y: Modulation of miRNAs by vitamin C in H2O2-exposed human umbilical vein endothelial cells. Int J Mol Med. 46:2150–2160. 2020. View Article : Google Scholar : | |
Zhang Y, Du W and Yang B: Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol Ther. 203:1073892019. View Article : Google Scholar : PubMed/NCBI | |
Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL and Raj A: Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16:202015. View Article : Google Scholar : | |
Kuo CC, Hanzelmann S, Sentürk Cetin N, Frank S, Zajzon B, Derks JP, Akhade VS, Ahuja G, Kanduri C, Grummt I, et al: Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res. 47:e322019. View Article : Google Scholar : PubMed/NCBI | |
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 458:223–227. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tong G, Wang Y, Xu C, Xu Y, Ye X, Zhou L, Zhu G, Zhou Z and Huang J: Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy. Am J Transl Res. 11:5634–5644. 2019.PubMed/NCBI | |
Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ and Han XL: Suppression of Long Non-Coding RNA LINC00652 restores sevoflurane-induced cardioprotection against myocardial ischemia-reperfusion injury by targeting GLP-1R through the cAMP/PKA pathway in mice. Cell Physiol Biochem. 49:1476–1491. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, et al: The protective roles of GLP-1R signaling in diabetic nephropathy: Possible mechanism and therapeutic potential. Kidney Int. 85:579–589. 2014. View Article : Google Scholar | |
Zhang H, Liu Y, Guan S, Qu D, Wang L, Wang X, Li X, Zhou S, Zhou Y, Wang N, et al: An orally active allosteric GLP-1 receptor agonist is neuroprotective in cellular and rodent models of stroke. PLoS One. 11:e01488272016. View Article : Google Scholar : PubMed/NCBI | |
van Goor H, van den Born JC, Hillebrands JL and Joles JA: Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens. 25:107–113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W and Zhu YZ: MiRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-Ƴ-lyase expression. Antioxid Redox Signal. 22:224–240. 2015. View Article : Google Scholar : | |
Hu X, Liu B, Wu P, Lang Y and Li T: LncRNA Oprm1 overexpression attenuates myocardial ischemia/reperfusion injury by increasing endogenous hydrogen sulfide via Oprm1/miR-30b-5p/CSE axis. Life Sci. 254:1176992020. View Article : Google Scholar : PubMed/NCBI | |
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z and Zhao C: LncRNA AK 139128 promotes cardiomyocyte autophagy and apoptosis in myocardial hypoxia-reoxygenation injury. Life Sci. 1167052019.Epub ahead of print. View Article : Google Scholar | |
Li X, Luo S, Zhang J, Yuan Y, Jiang W, Zhu H, Ding X, Zhan L, Wu H, Xie Y, et al: lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids. 17:297–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su Q, Liu Y, Lv XW, Ye ZL, Sun YH, Kong BH and Qin ZB: Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol. 133:12–25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Chen S, Liu W, Hou P, Sun W and Yan H: Downregulation of long non-coding RNA nuclear enriched abundant transcript 1 promotes cell proliferation and inhibits cell apoptosis by targeting miR-193a in myocardial ischemia/reperfusion injury. BMC Cardiovasc Disord. 19:1922019. View Article : Google Scholar | |
Wang JJ, Bie ZD and Sun CF: Long noncoding RNA AK088388 regulates autophagy through miR-30a to affect cardiomyocyte injury. J Cell Biochem. 120:10155–10163. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zou L, Ma X, Lin S, Wu B, Chen Y and Peng C: Long noncoding RNA-MEG3 contributes to myocardial ischemia-reperfusion injury through suppression of miR-7-5p expression. Biosci Rep. 39:BSR201902102019. View Article : Google Scholar | |
Rong J, Pan H, He J, Zhang Y, Hu Y, Wang C, Fu Q, Fan W, Zou Q, Zhang L, et al: Long non-coding RNA KCNQ1OT1/microRNA-204-5p/LGALS3 axis regulates myocardial ischemia/reperfusion injury in mice. Cell Signal. 66:1094412020. View Article : Google Scholar | |
Xue X and Luo L: LncRNA HIF1A-AS1 contributes to ventricular remodeling after myocardial ischemia/reperfusion injury by adsorption of microRNA-204 to regulating SOCS2 expression. Cell Cycle. 18:2465–2480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Wu N, Xia F, Liu S and Jia D: Long non-coding RNA GAS5 regulates myocardial ischemia-reperfusion injury through the PI3K/AKT apoptosis pathway by sponging miR-532-5p. Int J Mol Med. 45:858–872. 2020. | |
Chen F, Zhang L, Wang E, Zhang C and Li X: LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem Biophys Res Commun. 496:184–190. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu R, Wu J and Li Z: MicroRNA-137 negatively regulates H2O2-induced cardiomyocyte apoptosis through CDC42. Med Sci Monit. 21:3498–3504. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, Wang M, Dong YH, Li N, Gao JN, et al: The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 23:1394–1405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Li F, Li H, Wang R and Du M: Overexpression of lncRNA HULC attenuates myocardial Ischemia/reperfusion injury in rat models and apoptosis of Hypoxia/reoxygenation cardiomyocytes via targeting miR-377-5p through NLRP3/Caspase1/IL1β signaling pathway inhibition. Immunol Invest. Jul 17–2020.Epub ahead of print. View Article : Google Scholar | |
Zhao G, Hailati J, Ma X, Bao Z, Bakeyi M and Liu Z: LncRNA Gm4419 regulates myocardial ischemia/reperfusion injury through targeting the miR-682/TRAF3 Axis. J Cardiovasc Pharmacol. 76:305–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, et al: MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 117:352–363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Li Y and Wang P: Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury. Braz J Med Biol Res. 51:e65552018. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Guo B, Liu S, Miao C and Li Y: Inhibition of the LncRNA Gpr19 attenuates ischemia-reperfusion injury after acute myocardial infarction by inhibiting apoptosis and oxidative stress via the miR-324-5p/Mtfr1 axis. IUBMB Life. 72:373–383. 2020. View Article : Google Scholar | |
Zhang M, Gu H, Xu W and Zhou X: Down-regulation of lncRNA MALAT1 reduces cardiomyocyte apoptosis and improves left ventricular function in diabetic rats. Int J Cardiol. 203:214–216. 2016. View Article : Google Scholar | |
Wang S, Yu W, Chen J, Yao T and Deng F: LncRNA MALAT1 sponges miR-203 to promote inflammation in myocardial ischemia-reperfusion injury. Int J Cardiol. 268:2452018. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Zhu Y, Chang H, Li Y and Ma F: Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. Biosci Rep. 39:BSR201911032019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li J and Tang N: Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience. 354:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge ZW, Zhu XL, Wang BC, Hu JL, Sun JJ, Wang S, Chen XJ, Meng SP, Liu L and Cheng ZY: MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol. 280:152–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in Myogenesis. Mol Cell. 66:22–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T and Engelhardt S: Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol. 98:103–107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TD, et al: A landscape of circular RNA expression in the human heart. Cardiovasc Res. 113:298–309. 2017.PubMed/NCBI | |
Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y and Wang J: A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics. 8:5855–5869. 2018. View Article : Google Scholar | |
Zong L and Wang W: CircANXA2 promotes myocardial apoptosis in myocardial ischemia-reperfusion injury via inhibiting miRNA-133 expression. Biomed Res Int. 2020:85908612020. View Article : Google Scholar : PubMed/NCBI | |
Song YF, Zhao L, Wang BC, Sun JJ, Hu JL, Zhu XL, Zhao J, Zheng DK and Ge ZW: The circular RNA TLK1 exacerbates myocardial ischemia/reperfusion injury via targeting miR-214/RIPK1 through TNF signaling pathway. Free Radic Biol Med. 155:69–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cherra SR III, Dagda RK, Tandon A and Chu CT: Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy. 5:1213–1214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA and Guo M: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 441:1162–1166. 2006. View Article : Google Scholar : PubMed/NCBI | |
Billia F, Hauck L, Konecny F, Rao V, Shen J and Mak TW: PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci USA. 108:9572–9577. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, Zhang RC, Liu CY, Dong YH, Wang M, et al: The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ. 26:1299–1315. 2019. View Article : Google Scholar | |
Zweier JL and Talukder MA: The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 70:181–190. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Yao Q, Wang W, Yao H and Chao J: iNOS Induces vascular endothelial cell migration and apoptosis via autophagy in Ischemia/Reperfusion injury. Cell Physiol Biochem. 38:1575–1588. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Luo W, Zhang W, Chu H, Wang J, Dai X, Cheng Y, Zhu T and Chao J: circDLPAG4/HECTD1 mediates ischaemia/reperfusion injury in endothelial cells via ER stress. RNA Biol. 17:240–253. 2020. View Article : Google Scholar : | |
Fang S, Guo H, Cheng Y, Zhou Z, Zhang W, Han B, Luo W, Wang J, Xie W and Chao J: circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1. Cell Death Dis. 9:3962018. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Jia J, Wang X, Liu Y, Wang C and Fan R: Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biol Ther. 19:391–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou HF, Xu LL, Xie B, Ding HG, Fang F and Fang Q: Hsa-circ-0068566 inhibited the development of myocardial ischemia reperfusion injury by regulating hsa-miR-6322/PARP2 signal pathway. Eur Rev Med Pharmacol Sci. 24:6980–6993. 2020.PubMed/NCBI | |
Chang H, Li ZB, Wu JY and Zhang L: Circ-100338 induces angiogenesis after myocardial ischemia-reperfusion injury by sponging miR-200a-3p. Eur Rev Med Pharmacol Sci. 24:6323–6332. 2020.PubMed/NCBI | |
Ge X, Meng Q, Zhuang R, Yuan D, Liu J, Lin F, Fan H and Zhou X: Circular RNA expression alterations in extracellular vesicles isolated from murine heart post ischemia/reperfusion injury. Int J Cardiol. 296:136–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki YW, Siomi MC and Siomi H: PIWI-Interacting RNA: Its biogenesis and functions. Annu Rev Biochem. 84:405–433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vella S, Gallo A, Lo Nigro A, Galvagno D, Raffa GM, Pilato M and Conaldi PG: PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol. 76:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Zheng H, Huang A, Mai L, Huang X, Hu Y and Huang Y: Piwi-interacting RNAs play a role in vitamin C-mediated effects on endothelial aging. Int J Med Sci. 17:946–952. 2020. View Article : Google Scholar : PubMed/NCBI |